Suppression of Phagocytic Activity Leads to the Efficient Surface Modification of Macrophages with Liposomes for Developing a Biomimetic Drug Delivery System
Biological and Pharmaceutical Bulletin, ISSN: 1347-5215, Vol: 46, Issue: 9, Page: 1347-1351
2023
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Macrophages selectively infiltrate the lesion sites of several diseases, including cancers, and, thus, have attracted attention as a biomimetic drug delivery carrier. To achieve the efficient drug loading of macrophages with minimal cytotoxicity, drugs are preferably encapsulated into nanoparticles, such as liposomes, and modified on the surface of macrophages rather than being incorporated into cells. However, liposomes are rapidly taken up by macrophages after binding to the cell surface because of their strong phagocytic activity. To overcome this, we herein attempted to modify the surface of macrophages with liposomes by suppressing their phagocytic activity using a pretreatment with anionic liposomes. We confirmed that 1,2-distearoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DSPG)- and cholesterol-rich anionic liposomes were efficiently taken up by RAW264.7 murine macrophage-like cells. Furthermore, the cellular uptake of anionic liposomes by RAW264.7 cells was higher in the absence of fetal bovine serum (FBS) than in its presence. Moreover, the viability of RAW264.7 cells was maintained above 90% when cells were incubated with anionic liposomes for 3 h, whereas viability was markedly decreased after a 24-h incubation. Based on these results, we pretreated RAW264.7 cells by an incubation with DSPG- and cholesterol-rich liposomes for 3h in the absence of FBS. This pretreatment significantly inhibited the internalization of other liposomes, which subsequently bound to the cell surface. Therefore, we succeeded in modifying the surface of macrophages with liposomes, and liposome-modified macrophages have potential as a biomimetic active drug delivery carrier.
Bibliographic Details
Pharmaceutical Society of Japan
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know