Identification of a Histone Deacetylase 8 Inhibitor through Drug Screenings Based on Machine Learning
Chemical and Pharmaceutical Bulletin, ISSN: 1347-5223, Vol: 72, Issue: 2, Page: 173-178
2024
- 5Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef1
- Captures5
- Readers5
Article Description
Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 μM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.
Bibliographic Details
Pharmaceutical Society of Japan
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know