Analysis of gene expression in yeast protoplasts using DNA microarrays and their application for efficient production of invertase and α-glucosidase
Journal of Bioscience and Bioengineering, ISSN: 1389-1723, Vol: 97, Issue: 3, Page: 169-183
2004
- 5Citations
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The global gene expression of cultured Saccharomyces cerevisiae protoplasts was compared with that of cells using DNA microarray. Quantitative and qualitative analyses revealed that after 6 h of cultivation, 416 gene transcript levels (about 7.1% in all) in the cultured protoplasts were different from those in the cells. Various characteristics and functions of the protoplasts were predicted from the analysis of the gene functions. The cultured protoplasts were more sensitive to oxidative stress than the cultured cells. Their cell cycles were arrested at the G1 phase and cell wall synthesis was promoted. Carbohydrate metabolism was activated in cultured protoplasts, while amino acid biosynthesis was inhibited. Furthermore, some genes associated with the secretory pathway of metabolites were activated, leading to active secretion of these metabolites into the broth. As an example of the application of DNA microarray analysis, we developed two novel methods for the production of useful enzymes based on the characteristics of protoplasts. One was the production of invertase based on the activated secretory pathway, while the other was the production of α-glucosidase based on the activated carbohydrate metabolism. The secretion of invertase and α-glucosidase was promoted in cultured protoplasts. The invertase and α-glucosidase productivities in the cultured protoplasts were 657 U and 218 U, respectively. On the other hand, only 227 U of invertase was produced, while α-glucosidase was not detected, in the cultured cells. The fragile protoplasts were immobilized in agarose gel to protect them from hydrodynamic stress. Four repeated-batch cultures with the immobilized protoplasts were performed, leading to the production of 1574 U of invertase and 739 U of α-glucosidase. The same productivities were obtained when this system was scaled up by 10-fold (invertase: 13304 U; α-glucosidase: 7688 U).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know