Effect of temperature on non-destructive wave propagation in uranium monopnictides
Acta Physica Polonica A, ISSN: 1898-794X, Vol: 115, Issue: 3, Page: 664-670
2009
- 6Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Acoustic attenuation due to phonon-phonon interaction, thermoelastic mechanism and dislocation damping were evaluated in uranium monopnictides (viz. UN, UAs and USb) in the temperature range 50-500 K, along the three crystallographic directions of propagation, viz. [100], [110] and [111] for longitudinal and shear modes of propagation. Due to antiferromagnetic property of these compounds ultrasonic attenuation due to magnon-phonon interaction was also obtained. The second- and third-order elastic moduli of B1-type uranium monopnictides were obtained using electrostatic and the Born repulsive potentials. Gruneisen numbers and acoustic coupling constants were evaluated for longitudinal and shear waves along different directions of propagation and polarization. Results were discussed and compared with available data. It was found that the temperature dependence of attenuation due to phonon-phonon interaction and thermoelastic loss mechanisms follow the third and fourth order polynomial fit laws, respectively, and acoustic attenuation is mainly governed by phonon-phonon interaction in this temperature range.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know