Rule evaluation algorithm for semantic query optimisation
Applied Mathematics and Information Sciences, ISSN: 1935-0090, Vol: 7, Issue: 5, Page: 1773-1781
2013
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Semantic Query Optimisation (SQO) in Relational Database Management Systems (RDMSs) is a query optimisation approach which uses rules learned from past queries in order to execute new queries more intelligently without accessing database, whenever possible. The approach is composed of several components: Query Representation, Query Optimisation, Automatic Rule Derivation and Rule Maintenance. This paper focused on the query optimisation component. In RDMSs, during the traditional SQO, different alternative queries of a given query can be constructed using matching rule(s) from the rule set, and then its optimiser selects one of the alternatives as an optimum query which will give the same answer set but it can be executed faster than the original query. One of the main problems occurs during this process is to have many matched rules e.g., if the number of the rules is N, the number of the alternative queries is 2 -1. The construction and the optimisation of these alternatives also take time in addition to the execution of the query. In order to overcome this problem, in this paper we propose a new Rule Evaluation Algorithm. The main goal of the algorithm is to evaluate matching rule(s) and select useful/promising rules. And then use selected rules to construct an optimum query. The algorithm can answer the question of the utility of rules in the query optimisation. The system of the approach based on the algorithm has been implemented and its computational results are given. The experimental results show that the algorithm can trim the number of the rules significantly. © 2013 NSP Natural Sciences Publishing Cor.
Bibliographic Details
Natural Sciences Publishing
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know