Applying of an adaptive neuro fuzzy inference system for prediction of unsaturated soil hydraulic conductivity
Biosciences Biotechnology Research Asia, ISSN: 0973-1245, Vol: 12, Issue: 3, Page: 2261-2272
2015
- 9Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The unsaturated hydraulic conductivity of soil (Ku) is one of the most principal parameters in the study of water movement in the soil. The field measurement methods of (Ku) are hard and expensive. So, indirect prediction of (Ku) has received considerable attention as published in the research papers to be an alternative approach. However, prediction models for soil hydraulic conductivity are now widely used informative tools for rapid and cost-effective assessment. Thus in this study, an attempt has been made to apply an adaptive neuro-fuzzy inference system (ANFIS) for predicting (Ku). The input variables were ECRatio (electric conductivity of water divided by electric conductivity of soil), SARRatio (sodium adsorption ratio of water divided by sodium adsorption ratio of soil), soil texture index (calculated from clay, sand and silt), suction rate, organic matter in the soil, initial soil moisture content and initial soil bulk density. The Gaussian membership function was the best for the input variables. The Hybrid learning was selected for predicting (Ku) with ANFIS. Three performance functions namely; root mean squared error (RMSE), mean error (ME) and coefficient of determination (R2), were used to evaluate the predictive capability of the suggested (ANFIS). The obtained results for testing data (9 points) indicated that the R2 values relating predicted versus measured estimates of (Ku) was 0.783, ME was found to be 0.118 cm/sec and RMSE was found to be 0.472 cm/sec. As a result, it appears that applying ANFIS suggests a new approach for determining (Ku) along with saving time and cost.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84958765592&origin=inward; http://dx.doi.org/10.13005/bbra/1899; http://www.biotech-asia.org/vol12no3/applying-of-an-adaptive-neuro-fuzzy-inference-system-for-prediction-of-unsaturated-soil-hydraulic-conductivity/; https://dx.doi.org/10.13005/bbra/1899; https://www.biotech-asia.org/vol12no3/applying-of-an-adaptive-neuro-fuzzy-inference-system-for-prediction-of-unsaturated-soil-hydraulic-conductivity/
Oriental Scientific Publishing Company
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know