Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber
Optics Express, ISSN: 1094-4087, Vol: 27, Issue: 26, Page: 38421-38434
2019
- 59Citations
- 39Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations59
- Citation Indexes59
- 59
- CrossRef54
- Captures39
- Readers39
- 39
Article Description
The paper presents a novel three-dimensional quasi-continuous shape sensor based on an FBG array inscribed by femtosecond laser pulses into a 7-core optical fiber with a polyimide protective coating. The measured bending sensitivity of individual FBGs ranges from 0.046 nm/m to 0.049 nm/m. It is shown that the sensor allows for reconstructing 2- and 3-dimensional shapes with high accuracy. Due to the high value of the core aperture and individual calibration of each FBG we were able to measure the smallest reported bending radii down to 2.6 mm with a record accuracy of ∼1%. Moreover, we investigate the magnitude of the errors of curves reconstruction and errors associated with measurement of curvature radii in the range from 2.6 to 500 mm. The main factors affecting the accuracy of measurements are also discussed. The temperature resistance of both the inscribed FBG structures and of the protective coating, along with the high mechanical strength of the polyimide, makes it possible to use the sensor in harsh environments or in medical and composite material applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85077288098&origin=inward; http://dx.doi.org/10.1364/oe.380816; http://www.ncbi.nlm.nih.gov/pubmed/31878610; https://opg.optica.org/abstract.cfm?URI=oe-27-26-38421; https://dx.doi.org/10.1364/oe.380816; https://opg.optica.org/oe/abstract.cfm?uri=oe-27-26-38421
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know