Tunable frequency of a microwave mixed receiver based on Rydberg atoms under the Zeeman effect
Optics Express, ISSN: 1094-4087, Vol: 31, Issue: 22, Page: 36255-36262
2023
- 9Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Researchers are interested in the sensor based on Rydberg atoms because of its broad testing frequency range and outstanding sensitivity. However, the discrete frequency detection limits its further employment. We expand the frequency range of microwaves using Rydberg atoms under the Zeeman effect. In such a scheme, the magnetic field is employed as a tool to split and modify adjacent Rydberg level intervals to realize tunable frequency measurement over 100 MHz under 0-31.5 Gauss magnetic field. In this frequency range, the microwave has a linear dynamic variation range of 63 dB, and has achieved a sensitivity of 11.72 µV cmHz/ with the minimum detectable field strength of 17.2 µV/cm.. Compared to the no magnetic field scenario, the sensitivity would not decrease. By theoretical analysis, in a strong magnetic field, the tunable frequency range can be much larger than 100 MHz. The proposed method for achieving tunable frequency measurement provides a crucial tool in radars and communication.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85175949267&origin=inward; http://dx.doi.org/10.1364/oe.501647; http://www.ncbi.nlm.nih.gov/pubmed/38017780; https://opg.optica.org/abstract.cfm?URI=oe-31-22-36255; https://dx.doi.org/10.1364/oe.501647; https://opg.optica.org/oe/fulltext.cfm?uri=oe-31-22-36255&id=540801
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know