Influence of surface and interface roughness on X-ray and extreme ultraviolet reflectance: A comparative numerical study
OSA Continuum, ISSN: 2578-7519, Vol: 4, Issue: 5, Page: 1497-1518
2021
- 19Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The influence of surface and interface roughness on X-ray and extreme ultraviolet (EUV) reflectometry is becoming increasingly important as layer thicknesses decrease to a few nanometers in next-generation nanodevices and multilayer optics. Here we simulate two different approaches for numerically modeling roughness, the Névot-Croce factor and the graded-interface method, in the Parratt formalism of calculating the complex reflectance of multilayer systems. The simulations were carried out at wavelengths relevant to widely used metrology techniques, including 0.154 nm for X-ray reflectometry and 13.5 nm for EUV lithography. A large discrepancy is observed between the two approaches in several situations: when the roughness is large with respect to the wavelength, for interfaces with large changes in refractive index across the boundary, as well as around reflectance peaks due to interference effects. Caution is thus required when using either approach to model roughness in these situations.
Bibliographic Details
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know