Integral absorbance measurement for a non-uniform flow field using wavelength modulation absorption spectroscopy
Applied Optics, ISSN: 2155-3165, Vol: 60, Issue: 17, Page: 5056-5065
2021
- 7Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations7
- Citation Indexes7
- CrossRef7
- Captures4
- Readers4
Article Description
Combined with computed tomography (CT), the laser absorption spectroscopy technique is used to measure the two-dimensional distribution information of the flow field. The CT method needs an "integral parameter"as a known quantity. The integrated absorbance satisfies the criterion in the laser absorption spectral measurement. The direct absorption spectroscopy method directly measures the integrated absorbance. However, fitting the absorbance curve is difficult due to the distorted baseline in harsh environments. By contrast, the wavelength modulation spectroscopy (WMS) method has satisfactory noise rejection capability. The difficulty that introduces WMS method to measure the non-uniformflow distribution is the integrated absorbance cannot be written in a mathematical expression. Previous efforts focused on solving the average temperature, concentration, and pressure and recalculating the integrated absorbance. This paper aims to develop an integrated absorbance measurement based on the calibration-free WMS method for non-uniform flow, which is called the calibration-free WMS-A method. First, the relationship between the transmissivity and integrated absorbance was established. Then, integrated absorbance was written into the WMS harmonic signals and solved by comparing the measured and simulated signals. The systematic comparison between the WMS-A and the previous WMS method showed the effectivity of the WMS-A method for non-uniform flow measurement. The reliable integrated absorbance can considerably improve the two-dimensional reconstruction quality.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107276968&origin=inward; http://dx.doi.org/10.1364/ao.425183; http://www.ncbi.nlm.nih.gov/pubmed/34143071; https://opg.optica.org/abstract.cfm?URI=ao-60-17-5056; https://dx.doi.org/10.1364/ao.425183; https://opg.optica.org/ao/abstract.cfm?uri=ao-60-17-5056
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know