Generation of bright–dark solitons in an Er-doped fiber laser employing InSb as a saturable absorber
Applied Optics, ISSN: 2155-3165, Vol: 62, Issue: 8, Page: 1921-1926
2023
- 2Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations2
- Citation Indexes2
- CrossRef2
Article Description
In this paper, an indium antimonide (InSb) saturable absorber (SA) was successfully fabricated. The saturable absorption properties of the InSb SA were studied, and they show a modulation depth and a saturable intensity of 5.17% and 9.23 MW/cm, respectively. By employing the InSb SA and building the ring cavity laser structure, the bright–dark soliton operations were successfully obtained by increasing the pump power to 100.4 mW and adjusting the polarization controller. As the pump power increased from 100.4 to 180.3 mW, the average output power increased from 4.69 to 9.42 mW, the corresponding fundamental repetition rate was 2.85 MHz, and the signal-to-noise ratio was 68 dB. The experimental results show that InSb with excellent saturable absorption characteristics can be used as a SA to obtain pulse lasers. Therefore, InSb has important potential in fiber laser generation, further applications in optoelectronics, laser distance ranging, and optical fiber communication, and it can be widely developed.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85152104578&origin=inward; http://dx.doi.org/10.1364/ao.478859; http://www.ncbi.nlm.nih.gov/pubmed/37133075; https://opg.optica.org/abstract.cfm?URI=ao-62-8-1921; https://dx.doi.org/10.1364/ao.478859; https://opg.optica.org/ao/abstract.cfm?uri=ao-62-8-1921
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know