Diffraction integral and propagation of Hermite-Gaussian modes in a linear refractive index medium
Journal of the Optical Society of America A: Optics and Image Science, and Vision, ISSN: 1520-8532, Vol: 31, Issue: 5, Page: 914-919
2014
- 11Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We derive a diffraction integral to describe the paraxial propagation of an optical beam in a graded index medium with the permittivity linearly varying with the transverse coordinate. This integral transformation is irreducible to the familiar ABCD transformation. The form of the integral transformation suggests that, unlike a straight path in a homogeneous space, any paraxial optical beam will travel on a parabola bent toward the denser medium. By way of illustration, an explicit expression for the complex amplitude of a Hermite-Gaussian beam in the linear index medium is derived. © 2014 Optical Society of America.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84899828185&origin=inward; http://dx.doi.org/10.1364/josaa.31.000914; http://www.ncbi.nlm.nih.gov/pubmed/24979622; https://opg.optica.org/abstract.cfm?URI=josaa-31-5-914; https://www.osapublishing.org/abstract.cfm?URI=josaa-31-5-914; https://www.osapublishing.org/viewmedia.cfm?URI=josaa-31-5-914&seq=0
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know