Initiating self-focusing of beams carrying spatial phase singularities
Journal of the Optical Society of America B: Optical Physics, ISSN: 0740-3224, Vol: 31, Issue: 5, Page: 1159-1164
2014
- 2Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this work, we show both experimentally and by numerical simulations that the presence and evolution of a ring dark beam and/or an on-Axis optical vortex nested on a bright background beam noticeably perturb the host background. In a photorefractive nonlinear medium (crystal SBN) these perturbations can initiate self-focusing of the background. By changing the dark ring radius and the presence of an optical vortex and keeping all other experimental parameters unchanged, we can control the dynamics at the initial stage of longitudinal self-focusing and the type of self-focusing structure (single peak or bright ring of variable radius). The presented results may appear especially important in experiments that involve cascaded nonlinear frequency mixing of singular beams, in which accelerated dark beam spreading is accompanied by self-focusing of certain portions of the perturbed host beam. © 2014 Optical Society of America.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84899785890&origin=inward; http://dx.doi.org/10.1364/josab.31.001159; https://opg.optica.org/josab/abstract.cfm?uri=josab-31-5-1159; https://www.osapublishing.org/josab/abstract.cfm?uri=josab-31-5-1159; https://www.osapublishing.org/viewmedia.cfm?URI=josab-31-5-1159&seq=0; https://dx.doi.org/10.1364/josab.31.001159
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know