Nonlinearity compensation using optical phase conjugation deployed in discretely amplified transmission systems
Optics Express, ISSN: 1094-4087, Vol: 26, Issue: 18, Page: 23945-23959
2018
- 27Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We introduce a closed form equation, validated by simulations and experimental results that predicts the residual nonlinear noise ratio in mid-link OPC assisted discretely amplified systems. The model anticipates the reduction in performance enhancement achieved by mid-link OPC as the bandwidth of the modulated signals increases. The numerical analysis shows that uncompensated signal-signal interactions limit the performance improvement achieved by the introduction of additional OPCs. The numerical analysis predicts that the deployment of shorter amplifier spacing will lead to a greater performance enhancement. The numerical results are validated by experimentally testing of 2x, 4x, and 8x28Gbaud PM-QPSK systems with mid-link OPC compensation in a discretely amplified system with 100km amplifier spacing. The experimentally obtained reach enhancement (43%, 32%, and 24% for 2x28Gbaud, 4x28Gbaud, and 8x28Gbaud, respectively) confirms that the compensation efficiency of mid-link OPC is highly dependent on the number of channels (bandwidth) propagating along the system.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85052670247&origin=inward; http://dx.doi.org/10.1364/oe.26.023945; http://www.ncbi.nlm.nih.gov/pubmed/30184889; https://opg.optica.org/abstract.cfm?URI=oe-26-18-23945; https://dx.doi.org/10.1364/oe.26.023945; https://opg.optica.org/oe/fulltext.cfm?uri=oe-26-18-23945&id=396693
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know