Classically high-dimensional correlation: Simulation of high-dimensional entanglement
Optics Express, ISSN: 1094-4087, Vol: 26, Issue: 24, Page: 31413-31429
2018
- 4Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Classical correlation, akin to the entanglement of quantum states, has been proven to bear a great promise in classical and quantum systems, such as enhancing measurement precision and characterizing quantum channels. Despite numerous successful applications of such correlation, it is strictly limited to two orthogonal bases and fails to further extend its dimensionality in practice. Here, we report a classically high-dimensional correlation, which is mathematically equivalent to its quantum counterparts and can be used to simulate the violations of the high-dimensional Bell inequalities. Moreover, we also show theoretically that quantum channels with high-dimensional quantum states can be characterized robustly using our scheme when a one-sided channel is perturbed by a turbulent atmosphere. This means that our results not only provide new physical insights into the notion of classical correlation, but also show potential applications in high-dimensional quantum information processing.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85057118560&origin=inward; http://dx.doi.org/10.1364/oe.26.031413; http://www.ncbi.nlm.nih.gov/pubmed/30650727; https://opg.optica.org/abstract.cfm?URI=oe-26-24-31413; https://dx.doi.org/10.1364/oe.26.031413; https://opg.optica.org/oe/abstract.cfm?uri=oe-26-24-31413
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know