Deep subwavelength confinement and threshold engineering in a coupled nanorods based spaser
Optics Express, ISSN: 1094-4087, Vol: 27, Issue: 15, Page: 21579-21596
2019
- 3Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In recent years, extensive efforts have been made for design and fabrication of low threshold spasers or plasmonic nanolasers at a deep subwavelength scale. Plasmonic nanolasers with coupled-nanorods structure can realize this purpose due to energy concentration in nano size volumes and effective amplification mechanisms. In this study, a group of structures based on metallic and CdS coupled nanorods are designed and analyzed using the finite element method (FEM). By changing the lateral adjacent surfaces of the metal and semiconductor nanorods through utilizing regular polygons as the cross sections of the nanorods, different characteristics of the plasmonic nanolaser are investigated. Simulation results show that the mode area normalized by the diffraction limit area is as low as 0.0062 in the structures based on hexagonal metallic core with circular semiconductor nanorods while structures based on circular Ag core with hexagonal CdS nanorods can provide a low threshold gain as 1.310 μm. Also, it is shown that if ZnO be used as the semiconductor gain material instead of CdS, a normalized mode area of almost one tenth can be attained in a structure with dodecagonal metallic core and circular ZnO nanorods.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85069873306&origin=inward; http://dx.doi.org/10.1364/oe.27.021579; http://www.ncbi.nlm.nih.gov/pubmed/31510232; https://opg.optica.org/abstract.cfm?URI=oe-27-15-21579; https://dx.doi.org/10.1364/oe.27.021579; https://opg.optica.org/oe/fulltext.cfm?uri=oe-27-15-21579&id=415539
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know