Programmable field localization and enhancement effects on a non-structured planar surface with a permittivity gradient
Optics Express, ISSN: 1094-4087, Vol: 28, Issue: 2, Page: 1051-1060
2020
- 3Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We demonstrate electromagnetic field localization and enhancement effects on the non-structured planar surface of a two-dimensional gradient permittivity material. Surface plasmons are excited by a normally-incident Gaussian illumination beam and are confined to subwavelength rings on the surface of the gradient permittivity material. The performance of the surface is programmable by adjusting the permittivity distribution of the material and polarization of incident light. We show that field localization and enhancement effects can be realized at mid-infrared frequencies by conventional semiconductor materials with designed doping distributions. This demonstration suggests a compact and readily accessible platform for materials characterizations with spatially controlled illumination, providing a convenient approach to explore nanospectroscopy and light-matter interactions of nanomaterials, such as quantum dots, nanowires, and organic molecules.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85078512856&origin=inward; http://dx.doi.org/10.1364/oe.381474; http://www.ncbi.nlm.nih.gov/pubmed/32121822; https://opg.optica.org/abstract.cfm?URI=oe-28-2-1051; https://dx.doi.org/10.1364/oe.381474; https://opg.optica.org/oe/abstract.cfm?uri=oe-28-2-1051
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know