PlumX Metrics
Embed PlumX Metrics

Effective optical smoothing scheme to suppress laser plasma instabilities by time-dependent polarization rotation via pulse chirping

Optics Express, ISSN: 1094-4087, Vol: 29, Issue: 2, Page: 1304-1319
2021
  • 13
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    13
    • Citation Indexes
      13
  • Captures
    2

Article Description

In this paper, we propose a novel effective optical smoothing scheme to suppress laser plasma instabilities (LPIs) by time-dependent polarization rotation (TPR) on a picosecond timescale. The polarization rotation with time-dependent frequency is generated by the superposition of chirped light pulses with dynamic frequency shift and counter-rotating circular polarization. Compared to light without polarization rotation or pulse chirping, such superposed light with TPR has a broader spectrum and lower temporal coherence. Using the one-dimensional fluid laser-plasma-instability code (FLAME) and PIC simulation, TPR is demonstrated working well in suppressing parametric backscattering, which provides an effective approach to suppress LPIs. In the meantime, a significant improvement of irradiation uniformity of the chirped pulses is achieved by the introduction of proper spatial phase modulation and grating dispersion.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know