Polarization conversion metasurface design based on characteristic mode rotation and its application into wideband and miniature antennas with a low radar cross section
Optics Express, ISSN: 1094-4087, Vol: 29, Issue: 5, Page: 6794-6809
2021
- 48Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, a characteristic mode rotation (CMR) method has been proposed to design a compact metasurface antenna with a low radar cross section (RCS) in a wideband. In the proposed CMR method, the incident wave dependent complex characteristic currents corresponding to the dominant characteristic modes solved by the characteristic mode method (CMM) are calculated. With the direction of the superposition of the complex characteristic currents orthogonal to that of the incident electric field in the CMR method, the metasurface subarray with wideband polarization conversion characteristic is designed. By arranging the metasurface subarray in a rotation way, a metasurface array with a compact size of 1.28λ×1.28λ is designed for wideband RCS reduction. A miniature circle patch antenna is integrated with the metasurface array to achieve not only good radiation performance but also low observability for the in-band and the out-of-band of the antenna. Simulated and measured results demonstrate that the proposed miniature metasurface antenna designed by the CMR method has a good broadside radiation pattern, a maximal gain of 10.75 dB, and a -10 dB RCS reduction characteristic in the wide band of 6∼20.7 GHz with a fractional band of 110%.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101411003&origin=inward; http://dx.doi.org/10.1364/oe.416976; http://www.ncbi.nlm.nih.gov/pubmed/33726192; https://opg.optica.org/abstract.cfm?URI=oe-29-5-6794; https://dx.doi.org/10.1364/oe.416976; https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-5-6794&id=447817
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know