Quasi-Monte Carlo method for calculating X-ray scatter in CT
Optics Express, ISSN: 1094-4087, Vol: 29, Issue: 9, Page: 13746-13763
2021
- 3Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef3
- Captures2
- Readers2
Article Description
In this paper we transformthe trajectories of X-ray as it interacts with a phantom into a high-dimensional integration problem and give the integral formula for the probability of photons emitted from the X-ray source through the phantom to reach the detector. We propose a superior algorithm called gQMCFRD, which combines GPU-based quasi-Monte Carlo (gQMC) method with forced random detection (FRD) technique to simulate this integral. QMC simulation is deterministic versions of Monte Carlo (MC) simulation, which uses deterministic low discrepancy points (such as Sobol' points) instead of the random points. By using the QMC and FRD technique, the gQMCFRD greatly increases the simulation convergence rate and efficiency. We benchmark gQMCFRD, GPU based MC tool (gMCDRR), which performs conventional simulations, a GPU-based Metropolis MC tool (gMMC), which uses the Metropolis-Hasting algorithm to sample the entire photon path from the X-ray source to the detector and gMCFRD, that uses random points for sampling against PENELOPE subroutines: MC-GPU. The results are in excellent agreement and the Efficiency Improvement Factor range 27 ∼ 37 (or 1.09 ∼ 1.16, or 0.12 ∼ 0.15, or 3.62 ∼ 3.70) by gQMCFRD (or gMCDRR, or gMMC, or gMCFRD) with comparison to MC-GPU in all cases. It shows that gQMCFRD is more effective in these cases.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85105072441&origin=inward; http://dx.doi.org/10.1364/oe.422534; http://www.ncbi.nlm.nih.gov/pubmed/33985104; https://opg.optica.org/abstract.cfm?URI=oe-29-9-13746; https://dx.doi.org/10.1364/oe.422534; https://opg.optica.org/oe/abstract.cfm?uri=oe-29-9-13746
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know