Bend losses in flexible polyurethane antiresonant terahertz waveguides
Optics Express, ISSN: 1094-4087, Vol: 29, Issue: 18, Page: 28692-28703
2021
- 12Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
One important shortcoming of terahertz technology is the relative absence of convenient, flexible, and reconfigurable waveguides with low attenuation and small bend losses. While recent years have been marked by remarkable progress in lowering the impact of material losses using hollow-core guidance, such waveguides often have centimeter-scale diameter and are therefore not flexible. Here we experimentally and numerically investigate antiresonant dielectric waveguides made of thermoplastic polyurethane, a commonly used dielectric with a low Young's modulus. The hollow-core nature of antiresonant fibers leads to low transmission losses using simple structures, whereas the low Young's modulus of polyurethane makes them extremely flexible. The structures presented enable millimeter-wave manipulation in the same spirit as conventional (visible- and near-IR-) optical fibers, i.e. conveniently and reconfigurably, despite their centimeter-thick diameter. We investigate two canonical antiresonant geometries formed by one- and six-tubes, experimentally comparing their transmission, bend losses and mode profiles. The waveguides under investigation have loss below 1 dB/cm in their sub-THz transmission bands, increasing by 1 dB/cm for a bend radius of about 10 cm. We find that the six-tube waveguide outperforms its one-tube counterpart for smaller bend radii (here: 10cm); for larger bend radii, coupling to cladding tube modes can lead to a drop in transmission at specific frequencies in the six-tube waveguide that does not occur in the one-tube waveguide.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113665160&origin=inward; http://dx.doi.org/10.1364/oe.435920; http://www.ncbi.nlm.nih.gov/pubmed/34614994; https://opg.optica.org/abstract.cfm?URI=oe-29-18-28692; https://dx.doi.org/10.1364/oe.435920; https://opg.optica.org/oe/fulltext.cfm?uri=oe-29-18-28692&id=458039
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know