Sapphire optical fiber high-temperature vibration sensor
Optics Express, ISSN: 1094-4087, Vol: 30, Issue: 2, Page: 1056-1065
2022
- 27Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations27
- Citation Indexes27
- 27
- CrossRef18
- Captures9
- Readers9
Article Description
A sapphire fiber high-temperature vibration sensor with an extrinsic Fabry-Perot interferometer (EFPI) structure is proposed and experimentally demonstrated. The vibrating diaphragm of the sensor is a supported beam structure fabricated by etching a single-side polished sapphire wafer using a femtosecond laser. The FP cavity of the sensor is composed of the sapphire fiber end face and the polished surface of the vibrating diaphragm. The interference signal of the sensor is picked up by the sapphire fiber and transmitted to a laser interferometry demodulator through a multimode fiber. Experimental results show that the acceleration response is linear in the range of 0-10 g along with an acceleration sensitivity of 20.91 nm/g. The resonance frequency of the sensor is 2700 Hz, which is consistent with the ANSYS simulation results. The sensor can also work in the temperature range from room temperature to 1500 ℃, providing a feasible method for vibration measurements in high-temperature environments.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122737732&origin=inward; http://dx.doi.org/10.1364/oe.447449; http://www.ncbi.nlm.nih.gov/pubmed/35209249; https://opg.optica.org/abstract.cfm?URI=oe-30-2-1056; https://dx.doi.org/10.1364/oe.447449; https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-2-1056&id=466402
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know