Distributed temperature sensor combining centimeter resolution with hundreds of meters sensing range
Optics Express, ISSN: 1094-4087, Vol: 30, Issue: 5, Page: 6768-6777
2022
- 25Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations25
- Citation Indexes25
- 25
- CrossRef21
- Captures11
- Readers11
- 11
Article Description
We present a Raman distributed temperature sensor based on standard telecom single mode fibers and efficient polarization-independent superconducting nanowire single photon detectors. Our device shows 3 cm and 1.5 °C resolution on a 5 m fiber upon one minute integration. We show that spatial resolution is limited by the laser pulse width and not by the detection system. Moreover, for long fibers the minimum distance for a measurable temperature step change increases of around 4 cm per km length, because of chromatic dispersion at the Stokes and Anti-Stokes wavelengths. Temperature resolution is mainly affected by the drop in the laser repetition rate when long fibers are tested. On a 500 m fiber, a trade-off of 10 cm and 8 °C resolution is achieved with 3 minutes integration. Fiber-based distributed temperature sensing, combining centimetric spatial resolution with hundreds of meters sensing range, could pave the way for a new kind of applications, such as 2D and 3D temperature mapping of complex electronic devices, particles detectors, cryogenic and aerospace instrumentation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124798056&origin=inward; http://dx.doi.org/10.1364/oe.451699; http://www.ncbi.nlm.nih.gov/pubmed/35299455; https://opg.optica.org/abstract.cfm?URI=oe-30-5-6768; https://dx.doi.org/10.1364/oe.451699; https://opg.optica.org/oe/fulltext.cfm?uri=oe-30-5-6768&id=469488
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know