Dual projectile beams
Optics Express, ISSN: 1094-4087, Vol: 30, Issue: 11, Page: 18471-18480
2022
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Accelerating beams, of which the Airy beam is an important representative, are characterized by intensity maxima that propagate along curved trajectories. In this work we present a simple approach to directly generate accelerating beams with controllable trajectories by means of binary phase structures that consist of only a π phase step modulation in comparison to previous studies where two-dimensional cubic phase modulations for example are required, and which have practical limitations due to their challenging fabrication with phase plates or diffractive optical elements (DOEs), or the spatially extended system needed for their generation at the Fourier plane. In our approach, two intensity maxima are formed that propagate along root parabolic trajectories in contrast to Airy and higher order caustic beams that propagate along a parabolic curve, hence we call these beams Dual Projectile Beams (DPBs). By tailoring a step or slit phase patterns with additional Fresnel lenses, we either generate hollow-core or abruptly focusing beams and control their curvatures. Moreover, using DPBs as a simpler complement to complex structured light fields, we demonstrate their versatility at the example of their interaction with nonlinear matter, namely the formation of a spatial soliton in a photorefractive material. We show that the formed solitary state propagates almost unchanged for a distance of several Rayleigh lengths. This light matter interaction can be regarded as a light beam deceleration. The simplicity of this approach makes these beams suitable for integrated optics and high-power laser applications using DOEs or meta-surfaces.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130484672&origin=inward; http://dx.doi.org/10.1364/oe.453593; http://www.ncbi.nlm.nih.gov/pubmed/36221647; https://opg.optica.org/abstract.cfm?URI=oe-30-11-18471; https://dx.doi.org/10.1364/oe.453593; https://opg.optica.org/oe/abstract.cfm?uri=oe-30-11-18471
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know