PlumX Metrics
Embed PlumX Metrics

Towards optimal conversion efficiency of Brillouin random fiber lasers in a half-open linear cavity

Optics Express, ISSN: 1094-4087, Vol: 30, Issue: 18, Page: 32097-32109
2022
  • 7
    Citations
  • 0
    Usage
  • 2
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

We proposed and demonstrated an unprecedented high-efficiency Brillouin random fiber laser (BRFL) by fiber length optimization in a half-open linear cavity. In terms of the trade-off between Brillouin gain saturation and weak distributed Rayleigh feedback strength, optimal laser efficiency associated to proper fiber length in a BRFL was theoretically predicted. As a proof-of-concept, a unidirectional-pumped BRFL with a half-open linear cavity was experimentally conducted, in which a fiber Bragg grating at one end of gain fiber served as a high-reflection mirror while Rayleigh scattering enabled distributed feedback for random lasing resonance. Results show that the optimal fiber length of ∼3.4 km in the BRFL offers sufficient Rayleigh scattered random feedback whilst alleviating the Brillouin gain saturation to a large extent. Consequently, an optimal laser efficiency of 77.0% in the BRFL was experimentally demonstrated, which reaches the state-of-the-art high record. Laser characteristics, including the linewidth, statistics and frequency jitter were also systematically investigated. It is believed that such efficient BRFL could provide a promising platform for inspiring new explorations of laser physics as well as potentials in long-haul coherent communication and fiber-optic sensing.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know