Ultra-broadband coherent perfect absorption via elements with linear phase response
Optics Express, ISSN: 1094-4087, Vol: 30, Issue: 21, Page: 37350-37363
2022
- 5Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Increasing interest in perfect absorption of metasurface has initiated a discussion on the implementation of ultra-broadband coherent perfect absorption (CPA). Here, we present a mirror symmetric coherent absorption metasurface (CAMS) with polarization independence based on resistive thin films and annular metal patterns to force the fulfillment of ultra-broadband CPA in terahertz (THz) regime, controlling the interplay between electromagnetic waves and matter. By incorporating internal and external ring-shaped films with attached phase-delay lines, the desired phase response can be obtained, laying the foundation for implementing ultra-broadband coherent absorption. Simultaneously, by building a metal-medium composite structure superseding the dielectric substrate, additional promotion of the coherent absorptivity over the operation frequencies is realized. Manipulating the phase difference of two back-propagation coherent beams, the coherent absorptivity at 8.34-25.07 THz can be tailored successively from over 95.7% to as low as 38.1%. Moreover, with the incident angle up to 70° for the transverse electric wave, the coherent absorptivity is still over 74.8% from 8.34 THz to 25.07 THz. And for the transverse magnetic wave, at 6.67-24.2 THz, above 81.3% coherent absorptivity is visible with the incident angle increased from 0° to 60°. Our finding provides an interesting approach to designing ultra-broadband coherent absorption devices and may serve applications in THz modulators, all-optical switches, and signal processors.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139396637&origin=inward; http://dx.doi.org/10.1364/oe.471906; http://www.ncbi.nlm.nih.gov/pubmed/36258325; https://opg.optica.org/abstract.cfm?URI=oe-30-21-37350; https://dx.doi.org/10.1364/oe.471906; https://opg.optica.org/oe/abstract.cfm?uri=oe-30-21-37350
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know