Accurate phase detection in time-domain heterodyne SFG spectroscopy
Optics Express, ISSN: 1094-4087, Vol: 30, Issue: 21, Page: 39162-39174
2022
- 5Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Heterodyne detection is a ubiquitous tool in spectroscopy for the simultaneous detection of intensity and phase of light. However, the need for phase stability hinders the application of heterodyne detection to electronic spectroscopy. We present an interferometric design for a phase-sensitive electronic sum frequency generation (e-SFG) spectrometer in the time domain with lock-in detection. Our method of continuous phase modulation of one arm of the interferometer affords direct measurement of the phase between SFG and local oscillator fields. Errors in the path length difference caused by drifts in the optics are corrected, offering unprecedented stability. This spectrometer has the added advantage of collinear fundamental beams. The capabilities of the spectrometer are demonstrated with proof-of-principle experiments with GaAs e-SFG spectra, where we see significantly improved signal to noise ratio, spectral accuracy, and lineshapes.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139408079&origin=inward; http://dx.doi.org/10.1364/oe.473098; http://www.ncbi.nlm.nih.gov/pubmed/36258463; https://opg.optica.org/abstract.cfm?URI=oe-30-21-39162; https://dx.doi.org/10.1364/oe.473098; https://opg.optica.org/oe/abstract.cfm?uri=oe-30-21-39162
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know