TGPS: dynamic point cloud down-sampling of the dense point clouds for Terracotta Warrior fragments
Optics Express, ISSN: 1094-4087, Vol: 31, Issue: 6, Page: 9496-9514
2023
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
The dense point clouds of Terracotta Warriors obtained by a 3D scanner have a lot of redundant data, which reduces the efficiency of the transmission and subsequent processing. Aiming at the problems that points generated by sampling methods cannot be learned through the network and are irrelevant to downstream tasks, an end-to-end specific task-driven and learnable down-sampling method named TGPS is proposed. First, the point-based Transformer unit is used to embed the features and the mapping function is used to extract the input point features to dynamically describe the global features. Then, the inner product of the global feature and each point feature is used to estimate the contribution of each point to the global feature. The contribution values are sorted by descending for different tasks, and the point features with high similarity to the global features are retained. To further learn rich local representation, combined with the graph convolution operation, the Dynamic Graph Attention Edge Convolution (DGA EConv) is proposed as a neighborhood graph for local feature aggregation. Finally, the networks for the downstream tasks of point cloud classification and reconstruction are presented. Experiments show that the method realizes the down-sampling under the guidance of the global features. The proposed TGPS-DGA-Net for point cloud classification has achieved the best accuracy on both the real-world Terracotta Warrior fragments and the public datasets.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85150177714&origin=inward; http://dx.doi.org/10.1364/oe.481718; http://www.ncbi.nlm.nih.gov/pubmed/37157519; https://opg.optica.org/abstract.cfm?URI=oe-31-6-9496; https://dx.doi.org/10.1364/oe.481718; https://opg.optica.org/oe/abstract.cfm?uri=oe-31-6-9496
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know