C-DONN: compact diffractive optical neural network with deep learning regression
Optics Express, ISSN: 1094-4087, Vol: 31, Issue: 13, Page: 22127-22143
2023
- 10Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef2
- Captures13
- Readers13
- 13
Article Description
A new method to improve the integration level of an on-chip diffractive optical neural network (DONN) is proposed based on a standard silicon-on-insulator (SOI) platform. The metaline, which represents a hidden layer in the integrated on-chip DONN, is composed of subwavelength silica slots, providing a large computation capacity. However, the physical propagation process of light in the subwavelength metalinses generally requires an approximate characterization using slot groups and extra length between adjacent layers, which limits further improvements of the integration of on-chip DONN. In this work, a deep mapping regression model (DMRM) is proposed to characterize the process of light propagation in the metalines. This method improves the integration level of on-chip DONN to over 60,000 and elimnates the need for approximate conditions. Based on this theory, a compact-DONN (C-DONN) is exploited and benchmarked on the Iris plants dataset to verify the performance, yielding a testing accuracy of 93.3%. This method provides a potential solution for future large-scale on-chip integration.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know