Efficient generation of single photons by quantum dots embedded in bullseye cavities with backside dielectric mirrors
Optics Express, ISSN: 1094-4087, Vol: 31, Issue: 12, Page: 19536-19543
2023
- 3Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Single photons are pivotal building blocks for photonic quantum technologies. Semiconductor quantum dots are promising candidates for optimal single photon sources in terms of purity, brightness and indistinguishability. Here we embed quantum dots into bullseye cavities with a backside dielectric mirror to enhance the collection efficiency up to near 90%. Experimentally, we achieve a collection efficiency of 30%. The auto-correlation measurements reveal a multiphoton probability below 0.05±0.005. A moderate Purcell factor of 3.1 is observed. Furthermore, we propose a scheme for laser integration as well as fiber coupling. Our results represent a step forward to the practical plug-and-play single photon sources.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know