Color router-based long-wave infrared multispectral imaging
Optics Express, ISSN: 1094-4087, Vol: 32, Issue: 21, Page: 36875-36887
2024
- 1Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
Article Description
In the field of long-wave infrared multispectral imaging, traditional snapshot techniques often deploy broadband filters in front of the sensor to encode spectral information about the scene. However, this approach causes a significant loss of precious optical energy, especially for the limited radiation energy of the long-wave infrared region. To address this issue, we first propose an imaging strategy that replaces conventional filters with specially designed diffractive elements, which are optimized by a gradient descent algorithm. The diffractive elements enable effective steering of diverse wavelengths to their designated pixels, significantly minimizing the reflection losses throughout light transmission and thereby augmenting the system’s optical energy efficiency. Secondly, we use the MST neural network to reconstruct the spectral information and realize the snapshot computational multispectral imaging. In the experiments, we concentrate the wavelength band within 8-12 µm, simulating and optimizing the design of the diffractive elements. We also discuss how this innovative design can adapt to the field change of image plane that may be encountered in the actual imaging system. Emulation experiments show that our proposed method ensures excellent spectral separation and high imaging quality under different field conditions. This study provides new ideas and practical guidance for the lightweight and efficient development of long-wave infrared multispectral imaging technology.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85205990586&origin=inward; http://dx.doi.org/10.1364/oe.536948; http://www.ncbi.nlm.nih.gov/pubmed/39573566; https://opg.optica.org/abstract.cfm?URI=oe-32-21-36875; https://dx.doi.org/10.1364/oe.536948; https://opg.optica.org/oe/fulltext.cfm?uri=oe-32-21-36875&id=560148
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know