Isotropic topological second-order spatial differentiator operating in transmission mode
Optics Letters, ISSN: 1539-4794, Vol: 46, Issue: 13, Page: 3247-3250
2021
- 34Citations
- 18Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations34
- Citation Indexes34
- 34
- CrossRef27
- Captures18
- Readers18
- 18
Article Description
Differentiation has widespread applications, particularly in image processing for edge detection. Significant advances have been made in using nanophotonic structures and metamaterials to perform such operations. In particular, a recent work demonstrated a topological differentiator in which the transfer function exhibited a topological charge, making the differentiation operation robust to variations in operating conditions. The demonstrated topological differentiator, however, operates in reflection mode at off-normal incidence and is difficult to integrate into compact imaging systems. In this work, we design a topological differentiator that operates isotropically in transmission mode at normal incidence. The device exhibits an optical transfer function with a symmetry-protected topological charge of ±2 and performs second-order differentiation. Our work points to the potential of harnessing topological concepts for optical computing applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85109127989&origin=inward; http://dx.doi.org/10.1364/ol.430699; http://www.ncbi.nlm.nih.gov/pubmed/34197427; https://opg.optica.org/abstract.cfm?URI=ol-46-13-3247; https://dx.doi.org/10.1364/ol.430699; https://opg.optica.org/ol/abstract.cfm?uri=ol-46-13-3247
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know