Large optoelectronic chromatic dispersion in PN-type silicon photodiodes and photovoltaic cells
Optics Letters, ISSN: 1539-4794, Vol: 49, Issue: 8, Page: 2185-2188
2024
- 4Citations
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
Letter Description
Optoelectronic chromatic dispersion (OED) is a significant source of effective chromatic dispersion in photodiodes. We present an experimental and theoretical study of OED in PN-type Si photodiodes and photovoltaic cells and report on a very large effective chromatic dispersion in these devices. As measured with the modulation phase-shift technique at a frequency of 4 kHz for these slow devices, the OED spectral sensitivity for a commercial Si photodiode is approx. 0.02 deg/nm in the 720–850 nm wavelength band and increases to 0.25 deg/nm at λ = 1µm. For a Si photovoltaic cell, the OED is approx. 0.09 deg/nm in this spectral region. These values translate into an effective chromatic dispersion parameter of approx. 10 ps/(nm × km) for these sub-millimeter device lengths, which is over eight orders of magnitude larger than high-dispersion materials such as chalcogenide glass. The enormous dispersion in these sub-millimeter sized silicon-based devices can be utilized for on-chip optoelectronic sensors such as wavelength monitoring and spectroscopy. The substantial OED of photovoltaic cells can be utilized for the characterization and optimization and new applications for optical sensing with these self-powered devices. © 2024 Optica Publishing Group
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85190422705&origin=inward; http://dx.doi.org/10.1364/ol.514906; http://www.ncbi.nlm.nih.gov/pubmed/38621107; https://opg.optica.org/abstract.cfm?URI=ol-49-8-2185; https://dx.doi.org/10.1364/ol.514906; https://opg.optica.org/ol/abstract.cfm?uri=ol-49-8-2185
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know