Deep learning facilitated superhigh-resolution recognition of structured light ellipticities
Optics Letters, ISSN: 1539-4794, Vol: 49, Issue: 16, Page: 4709-4712
2024
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures3
- Readers3
Article Description
Elliptical beams (EBs), an essential family of structured light, have been investigated theoretically due to their intriguing mathematical properties. However, their practical application has been significantly limited due to the inability to determine all their physical quantities, particularly the ellipticity factor, a unique parameter for EBs of different families. In this paper, to our knowledge, we proposed the first high-accuracy approach that can effectively distinguish EBs with an ellipticity factor difference of 0.01, equivalent to 99.9% field similarities. The method is based on a transformer deep learning (DL) network, and the accuracy has reached 99% for two distinct families of exemplified EBs. To prove that the high performance of this model can dramatically extend the practical aspect of EBs, we used EBs as information carriers in free-space optical communication for an image transmission task, and an error bit rate as low as 0.22% is achieved. Advancing the path of such a DL approach will facilitate the research of EBs for many practical applications such as optical imaging, optical sensing, and quantum-related systems.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85201493171&origin=inward; http://dx.doi.org/10.1364/ol.528796; http://www.ncbi.nlm.nih.gov/pubmed/39146140; https://opg.optica.org/abstract.cfm?URI=ol-49-16-4709; https://dx.doi.org/10.1364/ol.528796; https://opg.optica.org/ol/abstract.cfm?uri=ol-49-16-4709
Optica Publishing Group
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know