Passive superresolution imaging of incoherent objects
Optica, ISSN: 2334-2536, Vol: 10, Issue: 9, Page: 1147-1152
2023
- 13Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The need to observe objects that are smaller than the diffraction limit has led to the development of various superresolution techniques. However, most such techniques require active interaction with the sample, which may not be possible in multiple practical scenarios. The recently developed technique of Hermite–Gaussian imaging (HGI) achieves superresolution by passively observing the light coming from an object. This approach involves decomposing the incoming field into the Hermite–Gaussian basis of spatial modes and measuring the amplitude or intensity of each component. From these measurements, the original object can be reconstructed. However, implementing HGI experimentally has proven to be challenging, and previous achievements have focused on coherent imaging or parameter estimation of simple objects. In this paper, we implement interferometric HGI in the incoherent regime and demonstrate a three-fold improvement in the resolution compared to direct imaging. We evaluate the performance of our method under different noise levels. Our results constitute a step towards powerful passive superresolution imaging techniques in fluorescent microscopy and astronomy.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know