Receptor-mediated yolk uptake is required for oskar mRNA localization and cortical anchorage of germ plasm components in the Drosophila oocyte
PLoS Biology, ISSN: 1545-7885, Vol: 19, Issue: 4, Page: e3001183
2021
- 8Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- Captures22
- Readers22
- 22
Article Description
The Drosophila germ plasm is responsible for germ cell formation. Its assembly begins with localization of oskar mRNA to the posterior pole of the oocyte. The oskar translation produces 2 isoforms with distinct functions: short Oskar recruits germ plasm components, whereas long Oskar remodels actin to anchor the components to the cortex. The mechanism by which long Oskar anchors them remains elusive. Here, we report that Yolkless, which facilitates uptake of nutrient yolk proteins into the oocyte, is a key cofactor for long Oskar. Loss of Yolkless or depletion of yolk proteins disrupts the microtubule alignment and oskar mRNA localization at the posterior pole of the oocyte, whereas microtubule-dependent localization of bicoid mRNA to the anterior and gurken mRNA to the anterior-dorsal corner remains intact. Furthermore, these mutant oocytes do not properly respond to long Oskar, causing defects in the actin remodeling and germ plasm anchoring. Thus, the yolk uptake is not merely the process for nutrient incorporation, but also crucial for oskar mRNA localization and cortical anchorage of germ plasm components in the oocyte.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85104834189&origin=inward; http://dx.doi.org/10.1371/journal.pbio.3001183; http://www.ncbi.nlm.nih.gov/pubmed/33891588; https://dx.plos.org/10.1371/journal.pbio.3001183; https://dx.doi.org/10.1371/journal.pbio.3001183; https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001183
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know