PlumX Metrics
Embed PlumX Metrics

HapTree: A Novel Bayesian Framework for Single Individual Polyplotyping Using NGS Data

PLoS Computational Biology, ISSN: 1553-7358, Vol: 10, Issue: 3, Page: e1003502
2014
  • 58
    Citations
  • 0
    Usage
  • 60
    Captures
  • 1
    Mentions
  • 1
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    58
  • Captures
    60
  • Mentions
    1
    • News Mentions
      1
      • News
        1
  • Social Media
    1
    • Shares, Likes & Comments
      1
      • Facebook
        1

Most Recent News

Haplotype-resolved assembly of a tetraploid potato genome using long reads and low-depth offspring data

Abstract Potato is one of the world’s major staple crops, and like many important crop plants, it has a polyploid genome. Polyploid haplotype assembly poses

Article Description

As the more recent next-generation sequencing (NGS) technologies provide longer read sequences, the use of sequencing datasets for complete haplotype phasing is fast becoming a reality, allowing haplotype reconstruction of a single sequenced genome. Nearly all previous haplotype reconstruction studies have focused on diploid genomes and are rarely scalable to genomes with higher ploidy. Yet computational investigations into polyploid genomes carry great importance, impacting plant, yeast and fish genomics, as well as the studies of the evolution of modern-day eukaryotes and (epi)genetic interactions between copies of genes. In this paper, we describe a novel maximum-likelihood estimation framework, HapTree, for polyploid haplotype assembly of an individual genome using NGS read datasets. We evaluate the performance of HapTree on simulated polyploid sequencing read data modeled after Illumina sequencing technologies. For triploid and higher ploidy genomes, we demonstrate that HapTree substantially improves haplotype assembly accuracy and efficiency over the state-of-the-art; moreover, HapTree is the first scalable polyplotyping method for higher ploidy. As a proof of concept, we also test our method on real sequencing data from NA12878 (1000 Genomes Project) and evaluate the quality of assembled haplotypes with respect to trio-based diplotype annotation as the ground truth. The results indicate that HapTree significantly improves the switch accuracy within phased haplotype blocks as compared to existing haplotype assembly methods, while producing comparable minimum error correction (MEC) values. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5. © 2014 Berger et al.

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84897413439&origin=inward; http://dx.doi.org/10.1371/journal.pcbi.1003502; http://www.ncbi.nlm.nih.gov/pubmed/24675685; https://dx.plos.org/10.1371/journal.pcbi.1003502.g003; http://dx.doi.org/10.1371/journal.pcbi.1003502.g003; https://dx.plos.org/10.1371/journal.pcbi.1003502.g002; http://dx.doi.org/10.1371/journal.pcbi.1003502.g002; https://dx.plos.org/10.1371/journal.pcbi.1003502.g004; http://dx.doi.org/10.1371/journal.pcbi.1003502.g004; https://dx.plos.org/10.1371/journal.pcbi.1003502.t001; http://dx.doi.org/10.1371/journal.pcbi.1003502.t001; https://dx.plos.org/10.1371/journal.pcbi.1003502.g005; http://dx.doi.org/10.1371/journal.pcbi.1003502.g005; https://dx.plos.org/10.1371/journal.pcbi.1003502; https://dx.plos.org/10.1371/journal.pcbi.1003502.g001; http://dx.doi.org/10.1371/journal.pcbi.1003502.g001; https://dx.plos.org/10.1371/journal.pcbi.1003502.g006; http://dx.doi.org/10.1371/journal.pcbi.1003502.g006; https://dx.doi.org/10.1371/journal.pcbi.1003502.g003; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1003502.g003; https://dx.doi.org/10.1371/journal.pcbi.1003502.g001; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1003502.g001; https://dx.doi.org/10.1371/journal.pcbi.1003502; https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003502; https://dx.doi.org/10.1371/journal.pcbi.1003502.g004; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1003502.g004; https://dx.doi.org/10.1371/journal.pcbi.1003502.g005; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1003502.g005; https://dx.doi.org/10.1371/journal.pcbi.1003502.g006; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1003502.g006; https://dx.doi.org/10.1371/journal.pcbi.1003502.t001; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1003502.t001; https://dx.doi.org/10.1371/journal.pcbi.1003502.g002; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1003502.g002; http://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1003502; https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003502&type=printable; http://dx.plos.org/10.1371/journal.pcbi.1003502.g006; http://dx.plos.org/10.1371/journal.pcbi.1003502.g001; http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003502; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pcbi.1003502; http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003502&type=printable; http://dx.plos.org/10.1371/journal.pcbi.1003502.t001; http://dx.plos.org/10.1371/journal.pcbi.1003502.g002; http://dx.plos.org/10.1371/journal.pcbi.1003502.g004; http://dx.plos.org/10.1371/journal.pcbi.1003502.g005; http://dx.plos.org/10.1371/journal.pcbi.1003502; http://dx.plos.org/10.1371/journal.pcbi.1003502.g003

Emily Berger; Deniz Yorukoglu; Jian Peng; Bonnie Berger; Isidore Rigoutsos

Public Library of Science (PLoS)

Agricultural and Biological Sciences; Mathematics; Environmental Science; Biochemistry, Genetics and Molecular Biology; Neuroscience; Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know