PlumX Metrics
Embed PlumX Metrics

A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models

PLoS Computational Biology, ISSN: 1553-7358, Vol: 13, Issue: 1, Page: e1005257
2017
  • 15
    Citations
  • 0
    Usage
  • 57
    Captures
  • 0
    Mentions
  • 30
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    15
  • Captures
    57
  • Social Media
    30
    • Shares, Likes & Comments
      30
      • Facebook
        30

Article Description

Stochastic transmission dynamic models are especially useful for studying the early emergence of novel pathogens given the importance of chance events when the number of infectious individuals is small. However, methods for parameter estimation and prediction for these types of stochastic models remain limited. In this manuscript, we describe a calibration and prediction framework for stochastic compartmental transmission models of epidemics. The proposed method, Multiple Shooting for Stochastic systems (MSS), applies a linear noise approximation to describe the size of the fluctuations, and uses each new surveillance observation to update the belief about the true epidemic state. Using simulated outbreaks of a novel viral pathogen, we evaluate the accuracy of MSS for real-time parameter estimation and prediction during epidemics. We assume that weekly counts for the number of new diagnosed cases are available and serve as an imperfect proxy of incidence. We show that MSS produces accurate estimates of key epidemic parameters (i.e. mean duration of infectiousness, R, and R) and can provide an accurate estimate of the unobserved number of infectious individuals during the course of an epidemic. MSS also allows for accurate prediction of the number and timing of future hospitalizations and the overall attack rate. We compare the performance of MSS to three state-of-the-art benchmark methods: 1) a likelihood approximation with an assumption of independent Poisson observations; 2) a particle filtering method; and 3) an ensemble Kalman filter method. We find that MSS significantly outperforms each of these three benchmark methods in the majority of epidemic scenarios tested. In summary, MSS is a promising method that may improve on current approaches for calibration and prediction using stochastic models of epidemics.

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85011362770&origin=inward; http://dx.doi.org/10.1371/journal.pcbi.1005257; http://www.ncbi.nlm.nih.gov/pubmed/28095403; https://dx.plos.org/10.1371/journal.pcbi.1005257.g004; http://dx.doi.org/10.1371/journal.pcbi.1005257.g004; https://dx.plos.org/10.1371/journal.pcbi.1005257.g006; http://dx.doi.org/10.1371/journal.pcbi.1005257.g006; https://dx.plos.org/10.1371/journal.pcbi.1005257.g005; http://dx.doi.org/10.1371/journal.pcbi.1005257.g005; https://dx.plos.org/10.1371/journal.pcbi.1005257.g002; http://dx.doi.org/10.1371/journal.pcbi.1005257.g002; https://dx.plos.org/10.1371/journal.pcbi.1005257.g001; http://dx.doi.org/10.1371/journal.pcbi.1005257.g001; https://dx.plos.org/10.1371/journal.pcbi.1005257.g003; http://dx.doi.org/10.1371/journal.pcbi.1005257.g003; https://dx.plos.org/10.1371/journal.pcbi.1005257; https://dx.doi.org/10.1371/journal.pcbi.1005257; https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005257; https://dx.doi.org/10.1371/journal.pcbi.1005257.g003; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1005257.g003; https://dx.doi.org/10.1371/journal.pcbi.1005257.g006; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1005257.g006; https://dx.doi.org/10.1371/journal.pcbi.1005257.g005; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1005257.g005; https://dx.doi.org/10.1371/journal.pcbi.1005257.g004; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1005257.g004; https://dx.doi.org/10.1371/journal.pcbi.1005257.g002; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1005257.g002; https://dx.doi.org/10.1371/journal.pcbi.1005257.g001; https://journals.plos.org/ploscompbiol/article/figure?id=10.1371/journal.pcbi.1005257.g001; http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005257; https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005257&type=printable; http://dx.plos.org/10.1371/journal.pcbi.1005257.g001; http://dx.plos.org/10.1371/journal.pcbi.1005257.g004; http://dx.plos.org/10.1371/journal.pcbi.1005257.g006; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pcbi.1005257; http://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005257&type=printable; http://dx.plos.org/10.1371/journal.pcbi.1005257.g003; http://dx.plos.org/10.1371/journal.pcbi.1005257.g005; http://dx.plos.org/10.1371/journal.pcbi.1005257; http://dx.plos.org/10.1371/journal.pcbi.1005257.g002; http://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1005257

Christoph Zimmer; Reza Yaesoubi; Ted Cohen; Justin Lessler

Public Library of Science (PLoS)

Agricultural and Biological Sciences; Mathematics; Environmental Science; Biochemistry, Genetics and Molecular Biology; Neuroscience; Computer Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know