Toward a 3D model of phyllotaxis based on a biochemically plausible auxin-transport mechanism
PLoS Computational Biology, ISSN: 1553-7358, Vol: 15, Issue: 4, Page: e1006896
2019
- 19Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef15
- Captures33
- Readers33
- 33
Article Description
Polar auxin transport lies at the core of many self-organizing phenomena sustaining continuous plant organogenesis. In angiosperms, the shoot apical meristem is a potentially unique system in which the two main modes of auxin-driven patterning-convergence and canalization- co-occur in a coordinated manner and in a fully three-dimensional geometry. In the epidermal layer, convergence points form, from which auxin is canalized towards inner tissue. Each of these two patterning processes has been extensively investigated separately, but the integration of both in the shoot apical meristem remains poorly understood. We present here a first attempt of a three-dimensional model of auxin-driven patterning during phyllotaxis. We base our simulations on a biochemically plausible mechanism of auxin transport proposed by Cieslak et al. (2015) which generates both convergence and canalization patterns. We are able to reproduce most of the dynamics of PIN1 polarization in the meristem, and we explore how the epidermal and inner cell layers act in concert during phyllotaxis. In addition, we discuss the mechanism by which initiating veins connect to the already existing vascular system.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065509902&origin=inward; http://dx.doi.org/10.1371/journal.pcbi.1006896; http://www.ncbi.nlm.nih.gov/pubmed/30998674; https://dx.plos.org/10.1371/journal.pcbi.1006896; https://dx.doi.org/10.1371/journal.pcbi.1006896; https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006896
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know