PlumX Metrics
Embed PlumX Metrics

A Sensitized Screen for Genes Promoting Invadopodia Function In Vivo: CDC-42 and Rab GDI-1 Direct Distinct Aspects of Invadopodia Formation

PLoS Genetics, ISSN: 1553-7404, Vol: 12, Issue: 1, Page: e1005786
2016
  • 36
    Citations
  • 0
    Usage
  • 60
    Captures
  • 2
    Mentions
  • 22
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    36
  • Captures
    60
  • Mentions
    2
    • Blog Mentions
      1
      • Blog
        1
    • News Mentions
      1
      • News
        1
  • Social Media
    22
    • Shares, Likes & Comments
      22
      • Facebook
        22

Most Recent News

Why do cells make invadopodia?

Anchor Cell invasion in C. elegans. Image shows F-actin (mCherry) and basement membrane laminin (GFP) overlayed on DIC. Credit: Lohmer, Clay et al. During development

Article Description

Invadopodia are specialized membrane protrusions composed of F-actin, actin regulators, signaling proteins, and a dynamically trafficked invadopodial membrane that drive cell invasion through basement membrane (BM) barriers in development and cancer. Due to the challenges of studying invasion in vivo, mechanisms controlling invadopodia formation in their native environments remain poorly understood. We performed a sensitized genome-wide RNAi screen and identified 13 potential regulators of invadopodia during anchor cell (AC) invasion into the vulval epithelium in C. elegans. Confirming the specificity of this screen, we identified the Rho GTPase cdc-42, which mediates invadopodia formation in many cancer cell lines. Using live-cell imaging, we show that CDC-42 localizes to the AC-BM interface and is activated by an unidentified vulval signal(s) that induces invasion. CDC-42 is required for the invasive membrane localization of WSP-1 (N-WASP), a CDC-42 effector that promotes polymerization of F-actin. Loss of CDC-42 or WSP-1 resulted in fewer invadopodia and delayed BM breaching. We also characterized a novel invadopodia regulator, gdi-1 (Rab GDP dissociation inhibitor), which mediates membrane trafficking. We show that GDI-1 functions in the AC to promote invadopodia formation. In the absence of GDI-1, the specialized invadopodial membrane was no longer trafficked normally to the invasive membrane, and instead was distributed to plasma membrane throughout the cell. Surprisingly, the pro-invasive signal(s) from the vulval cells also controls GDI-1 activity and invadopodial membrane trafficking. These studies represent the first in vivo screen for genes regulating invadopodia and demonstrate that invadopodia formation requires the integration of distinct cellular processes that are coordinated by an extracellular cue.

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84958730038&origin=inward; http://dx.doi.org/10.1371/journal.pgen.1005786; http://www.ncbi.nlm.nih.gov/pubmed/26765257; https://dx.plos.org/10.1371/journal.pgen.1005786.g001; http://dx.doi.org/10.1371/journal.pgen.1005786.g001; https://dx.plos.org/10.1371/journal.pgen.1005786.g007; http://dx.doi.org/10.1371/journal.pgen.1005786.g007; https://dx.plos.org/10.1371/journal.pgen.1005786; https://dx.plos.org/10.1371/journal.pgen.1005786.g002; http://dx.doi.org/10.1371/journal.pgen.1005786.g002; https://dx.plos.org/10.1371/journal.pgen.1005786.g006; http://dx.doi.org/10.1371/journal.pgen.1005786.g006; https://dx.plos.org/10.1371/journal.pgen.1005786.g003; http://dx.doi.org/10.1371/journal.pgen.1005786.g003; https://dx.plos.org/10.1371/journal.pgen.1005786.t002; http://dx.doi.org/10.1371/journal.pgen.1005786.t002; https://dx.plos.org/10.1371/journal.pgen.1005786.g008; http://dx.doi.org/10.1371/journal.pgen.1005786.g008; https://dx.plos.org/10.1371/journal.pgen.1005786.g004; http://dx.doi.org/10.1371/journal.pgen.1005786.g004; https://dx.plos.org/10.1371/journal.pgen.1005786.t001; http://dx.doi.org/10.1371/journal.pgen.1005786.t001; https://dx.plos.org/10.1371/journal.pgen.1005786.g005; http://dx.doi.org/10.1371/journal.pgen.1005786.g005; https://dx.doi.org/10.1371/journal.pgen.1005786.g002; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.g002; https://dx.doi.org/10.1371/journal.pgen.1005786.g007; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.g007; https://dx.doi.org/10.1371/journal.pgen.1005786.g005; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.g005; https://dx.doi.org/10.1371/journal.pgen.1005786.g006; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.g006; https://dx.doi.org/10.1371/journal.pgen.1005786.g001; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.g001; https://dx.doi.org/10.1371/journal.pgen.1005786.g003; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.g003; https://dx.doi.org/10.1371/journal.pgen.1005786.t002; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.t002; https://dx.doi.org/10.1371/journal.pgen.1005786; https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005786; https://dx.doi.org/10.1371/journal.pgen.1005786.g004; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.g004; https://dx.doi.org/10.1371/journal.pgen.1005786.g008; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.g008; https://dx.doi.org/10.1371/journal.pgen.1005786.t001; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005786.t001; http://dx.plos.org/10.1371/journal.pgen.1005786.t001; http://dx.plos.org/10.1371/journal.pgen.1005786.g008; http://dx.plos.org/10.1371/journal.pgen.1005786.g005; http://journals.plos.org/plosgenetics/article/metrics?id=10.1371/journal.pgen.1005786; https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005786&type=printable; http://dx.plos.org/10.1371/journal.pgen.1005786.g001; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pgen.1005786; http://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005786&type=printable; http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005786; http://dx.plos.org/10.1371/journal.pgen.1005786.t002; http://dx.plos.org/10.1371/journal.pgen.1005786.g007; http://www.plosgenetics.org/article/metrics/info:doi/10.1371/journal.pgen.1005786; http://journals.plos.org/plosgenetics/article?id=10.1371%2Fjournal.pgen.1005786; http://dx.plos.org/10.1371/journal.pgen.1005786.g003; http://dx.plos.org/10.1371/journal.pgen.1005786.g004; http://dx.plos.org/10.1371/journal.pgen.1005786.g006; http://dx.plos.org/10.1371/journal.pgen.1005786.g002; http://dx.plos.org/10.1371/journal.pgen.1005786

Lauren L. Lohmer; Matthew R. Clay; Kaleb M. Naegeli; Qiuyi Chi; Joshua W. Ziel; Elliott J. Hagedorn; Jieun E. Park; Ranjay Jayadev; David R. Sherwood; Andrew D. Chisholm

Public Library of Science (PLoS)

Agricultural and Biological Sciences; Biochemistry, Genetics and Molecular Biology; Medicine

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know