PlumX Metrics
Embed PlumX Metrics

Systems Level Analyses Reveal Multiple Regulatory Activities of CodY Controlling Metabolism, Motility and Virulence in Listeria monocytogenes

PLoS Genetics, ISSN: 1553-7404, Vol: 12, Issue: 2, Page: e1005870
2016
  • 54
    Citations
  • 0
    Usage
  • 104
    Captures
  • 0
    Mentions
  • 27
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    54
  • Captures
    104
  • Social Media
    27
    • Shares, Likes & Comments
      27
      • Facebook
        27

Article Description

Bacteria sense and respond to many environmental cues, rewiring their regulatory network to facilitate adaptation to new conditions/niches. Global transcription factors that co-regulate multiple pathways simultaneously are essential to this regulatory rewiring. CodY is one such global regulator, controlling expression of both metabolic and virulence genes in Gram-positive bacteria. Branch chained amino acids (BCAAs) serve as a ligand for CodY and modulate its activity. Classically, CodY was considered to function primarily as a repressor under rich growth conditions. However, our previous studies of the bacterial pathogen Listeria monocytogenes revealed that CodY is active also when the bacteria are starved for BCAAs. Under these conditions, CodY loses the ability to repress genes (e.g., metabolic genes) and functions as a direct activator of the master virulence regulator gene, prfA. This observation raised the possibility that CodY possesses multiple functions that allow it to coordinate gene expression across a wide spectrum of metabolic growth conditions, and thus better adapt bacteria to the mammalian niche. To gain a deeper understanding of CodY’s regulatory repertoire and identify direct target genes, we performed a genome wide analysis of the CodY regulon and DNA binding under both rich and minimal growth conditions, using RNA-Seq and ChIP-Seq techniques. We demonstrate here that CodY is indeed active (i.e., binds DNA) under both conditions, serving as a repressor and activator of different genes. Further, we identified new genes and pathways that are directly regulated by CodY (e.g., sigB, arg, his, actA, glpF, gadG, gdhA, poxB, glnR and fla genes), integrating metabolism, stress responses, motility and virulence in L. monocytogenes. This study establishes CodY as a multifaceted factor regulating L. monocytogenes physiology in a highly versatile manner.

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84959918141&origin=inward; http://dx.doi.org/10.1371/journal.pgen.1005870; http://www.ncbi.nlm.nih.gov/pubmed/26895237; https://dx.plos.org/10.1371/journal.pgen.1005870.g005; http://dx.doi.org/10.1371/journal.pgen.1005870.g005; https://dx.plos.org/10.1371/journal.pgen.1005870.g002; http://dx.doi.org/10.1371/journal.pgen.1005870.g002; https://dx.plos.org/10.1371/journal.pgen.1005870.g008; http://dx.doi.org/10.1371/journal.pgen.1005870.g008; https://dx.plos.org/10.1371/journal.pgen.1005870.g001; http://dx.doi.org/10.1371/journal.pgen.1005870.g001; https://dx.plos.org/10.1371/journal.pgen.1005870; https://dx.plos.org/10.1371/journal.pgen.1005870.g006; http://dx.doi.org/10.1371/journal.pgen.1005870.g006; https://dx.plos.org/10.1371/journal.pgen.1005870.g004; http://dx.doi.org/10.1371/journal.pgen.1005870.g004; https://dx.plos.org/10.1371/journal.pgen.1005870.g007; http://dx.doi.org/10.1371/journal.pgen.1005870.g007; https://dx.plos.org/10.1371/journal.pgen.1005870.g003; http://dx.doi.org/10.1371/journal.pgen.1005870.g003; https://dx.doi.org/10.1371/journal.pgen.1005870.g004; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005870.g004; https://dx.doi.org/10.1371/journal.pgen.1005870; https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005870; https://dx.doi.org/10.1371/journal.pgen.1005870.g008; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005870.g008; https://dx.doi.org/10.1371/journal.pgen.1005870.g003; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005870.g003; https://dx.doi.org/10.1371/journal.pgen.1005870.g001; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005870.g001; https://dx.doi.org/10.1371/journal.pgen.1005870.g007; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005870.g007; https://dx.doi.org/10.1371/journal.pgen.1005870.g002; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005870.g002; https://dx.doi.org/10.1371/journal.pgen.1005870.g006; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005870.g006; https://dx.doi.org/10.1371/journal.pgen.1005870.g005; https://journals.plos.org/plosgenetics/article/figure?id=10.1371/journal.pgen.1005870.g005; http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005870; https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005870&type=printable; http://dx.plos.org/10.1371/journal.pgen.1005870.g004; http://dx.plos.org/10.1371/journal.pgen.1005870.g008; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pgen.1005870; http://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1005870&type=printable; http://dx.plos.org/10.1371/journal.pgen.1005870.g001; http://journals.plos.org/plosgenetics/article?id=10.1371%2Fjournal.pgen.1005870; http://dx.plos.org/10.1371/journal.pgen.1005870.g005; http://dx.plos.org/10.1371/journal.pgen.1005870.g006; http://dx.plos.org/10.1371/journal.pgen.1005870.g007; http://dx.plos.org/10.1371/journal.pgen.1005870.g002; http://dx.plos.org/10.1371/journal.pgen.1005870.g003; http://dx.plos.org/10.1371/journal.pgen.1005870

Lior Lobel; Anat A. Herskovits; Daniel B. Kearns

Public Library of Science (PLoS)

Agricultural and Biological Sciences; Biochemistry, Genetics and Molecular Biology; Medicine

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know