State-space forecasting of Schistosoma haematobium time-series in Niono, Mali
PLoS Neglected Tropical Diseases, ISSN: 1935-2735, Vol: 2, Issue: 8, Page: e276
2008
- 14Citations
- 53Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef10
- Captures53
- Readers53
- 53
Article Description
Background: Much of the developing world, particularly sub-Saharan Africa, exhibits high levels of morbidity and mortality associated with infectious diseases. The incidence of Schistosoma sp. - which are neglected tropical diseases exposing and infecting more than 500 and 200 million individuals in 77 countries, respectively - is rising because of 1) numerous irrigation and hydro-electric projects, 2) steady shifts from nomadic to sedentary existence, and 3) ineffective control programs. Notwithstanding the colossal scope of these parasitic infections, less than 0.5% of Schistosoma sp. investigations have attempted to predict their spatial and or temporal distributions. Undoubtedly, public health programs in developing countries could benefit from parsimonious forecasting and early warning systems to enhance management of these parasitic diseases. Methodology/Principal Findings: In this longitudinal retrospective (01/ 1996-06/2004) investigation, the Schistosoma haematobium time-series for the district of Niono, Mali, was fitted with general-purpose exponential smoothing methods to generate contemporaneous on-line forecasts. These methods, which are encapsulated within a state-space framework, accommodate seasonal and inter-annual time-series fluctuations. Mean absolute percentage error values were circa 25% for 1- to 5-month horizon forecasts. Conclusions/Significance: The exponential smoothing state-space framework employed herein produced reasonably accurate forecasts for this time-series, which reflects the incidence of S. haematobium-induced terminal hematuria. It obliquely captured prior non-linear interactions between disease dynamics and exogenous covariates (e.g., climate, irrigation, and public health interventions), thus obviating the need for more complex forecasting methods in the district of Niono, Mali. Therefore, this framework could assist with managing and assessing S. haematobium transmission and intervention impact, respectively, in this district and potentially elsewhere in the Sahel. © 2008 Medina et al.
Bibliographic Details
10.1371/journal.pntd.0000276; 10.1371/journal.pntd.0000276.g002; 10.1371/journal.pntd.0000276.g003; 10.1371/journal.pntd.0000276.g001; 10.1371/journal.pntd.0000276.t002; 10.1371/journal.pntd.0000276.g004; 10.1371/journal.pntd.0000276.t003; 10.1371/journal.pntd.0000276.t001; 10.1371/journal.pntd.0000276.g005
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=56149101339&origin=inward; http://dx.doi.org/10.1371/journal.pntd.0000276; http://www.ncbi.nlm.nih.gov/pubmed/18698361; https://dx.plos.org/10.1371/journal.pntd.0000276.g002; http://dx.doi.org/10.1371/journal.pntd.0000276.g002; https://dx.plos.org/10.1371/journal.pntd.0000276.g003; http://dx.doi.org/10.1371/journal.pntd.0000276.g003; https://dx.plos.org/10.1371/journal.pntd.0000276.g001; http://dx.doi.org/10.1371/journal.pntd.0000276.g001; https://dx.plos.org/10.1371/journal.pntd.0000276; https://dx.plos.org/10.1371/journal.pntd.0000276.t002; http://dx.doi.org/10.1371/journal.pntd.0000276.t002; https://dx.plos.org/10.1371/journal.pntd.0000276.g004; http://dx.doi.org/10.1371/journal.pntd.0000276.g004; https://dx.plos.org/10.1371/journal.pntd.0000276.t003; http://dx.doi.org/10.1371/journal.pntd.0000276.t003; https://dx.plos.org/10.1371/journal.pntd.0000276.t001; http://dx.doi.org/10.1371/journal.pntd.0000276.t001; https://dx.plos.org/10.1371/journal.pntd.0000276.g005; http://dx.doi.org/10.1371/journal.pntd.0000276.g005; https://dx.doi.org/10.1371/journal.pntd.0000276.g002; https://journals.plos.org/plosntds/article/figure?id=10.1371/journal.pntd.0000276.g002; https://dx.doi.org/10.1371/journal.pntd.0000276.t002; https://journals.plos.org/plosntds/article/figure?id=10.1371/journal.pntd.0000276.t002; https://dx.doi.org/10.1371/journal.pntd.0000276.g001; https://journals.plos.org/plosntds/article/figure?id=10.1371/journal.pntd.0000276.g001; https://dx.doi.org/10.1371/journal.pntd.0000276.t001; https://journals.plos.org/plosntds/article/figure?id=10.1371/journal.pntd.0000276.t001; https://dx.doi.org/10.1371/journal.pntd.0000276.g003; https://journals.plos.org/plosntds/article/figure?id=10.1371/journal.pntd.0000276.g003; https://dx.doi.org/10.1371/journal.pntd.0000276.t003; https://journals.plos.org/plosntds/article/figure?id=10.1371/journal.pntd.0000276.t003; https://dx.doi.org/10.1371/journal.pntd.0000276.g004; https://journals.plos.org/plosntds/article/figure?id=10.1371/journal.pntd.0000276.g004; https://dx.doi.org/10.1371/journal.pntd.0000276; https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0000276; https://dx.doi.org/10.1371/journal.pntd.0000276.g005; https://journals.plos.org/plosntds/article/figure?id=10.1371/journal.pntd.0000276.g005; http://dx.plos.org/10.1371/journal.pntd.0000276.g005; http://dx.plos.org/10.1371/journal.pntd.0000276.t003; http://dx.plos.org/10.1371/journal.pntd.0000276; https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0000276&type=printable; http://dx.plos.org/10.1371/journal.pntd.0000276.g001; http://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0000276; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pntd.0000276; http://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0000276&type=printable; http://dx.plos.org/10.1371/journal.pntd.0000276.g004; http://journals.plos.org/plosntds/article?id=10.1371%2Fjournal.pntd.0000276; http://dx.plos.org/10.1371/journal.pntd.0000276.g003; http://dx.plos.org/10.1371/journal.pntd.0000276.t002; http://dx.plos.org/10.1371/journal.pntd.0000276.t001; http://dx.plos.org/10.1371/journal.pntd.0000276.g002
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know