Detecting space-time clusters of dengue fever in Panama after adjusting for vector surveillance data
PLoS Neglected Tropical Diseases, ISSN: 1935-2735, Vol: 13, Issue: 9, Page: e0007266
2019
- 18Citations
- 62Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations18
- Citation Indexes18
- 18
- CrossRef1
- Captures62
- Readers62
- 62
Article Description
Long term surveillance of vectors and arboviruses is an integral aspect of disease prevention and control systems in countries affected by increasing risk. Yet, little effort has been made to adjust space-time risk estimation by integrating disease case counts with vector surveillance data, which may result in inaccurate risk projection when several vector species are present, and when little is known about their likely role in local transmission. Here, we integrate 13 years of dengue case surveillance and associated Aedes occurrence data across 462 localities in 63 districts to estimate the risk of infection in the Republic of Panama. Our exploratory space-time modelling approach detected the presence of five clusters, which varied by duration, relative risk, and spatial extent after incorporating vector species as covariates. The Ae. aegypti model contained the highest number of districts with more dengue cases than would be expected given baseline population levels, followed by the model accounting for both Ae. aegypti and Ae. albopictus. This implies that arbovirus case surveillance coupled with entomological surveillance can affect cluster detection and risk estimation, potentially improving efforts to understand outbreak dynamics at national scales.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85072944169&origin=inward; http://dx.doi.org/10.1371/journal.pntd.0007266; http://www.ncbi.nlm.nih.gov/pubmed/31545819; http://dx.plos.org/10.1371/journal.pntd.0007266; https://dx.doi.org/10.1371/journal.pntd.0007266; https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0007266
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know