Spatial epidemiology and adaptive targeted sampling to manage the Chagas disease vector Triatoma dimidiata
PLoS Neglected Tropical Diseases, ISSN: 1935-2735, Vol: 16, Issue: 6, Page: e0010436
2022
- 9Citations
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- Captures11
- Readers11
- 11
Article Description
Widespread application of insecticide remains the primary form of control for Chagas disease in Central America, despite only temporarily reducing domestic levels of the endemic vector Triatoma dimidiata and having little long-term impact. Recently, an approach emphasizing community feedback and housing improvements has been shown to yield lasting results. However, the additional resources and personnel required by such an intervention likely hinders its widespread adoption. One solution to this problem would be to target only a subset of houses in a community while still eliminating enough infestations to interrupt disease transfer. Here we develop a sequential sampling framework that adapts to information specific to a community as more houses are visited, thereby allowing us to efficiently find homes with domiciliary vectors while minimizing sampling bias. The method fits Bayesian geostatistical models to make spatially informed predictions, while gradually transitioning from prioritizing houses based on prediction uncertainty to targeting houses with a high risk of infestation. A key feature of the method is the use of a single exploration parameter, α, to control the rate of transition between these two design targets. In a simulation study using empirical data from five villages in southeastern Guatemala, we test our method using a range of values for α, and find it can consistently select fewer homes than random sampling, while still bringing the village infestation rate below a given threshold. We further find that when additional socioeconomic information is available, much larger savings are possible, but that meeting the target infestation rate is less consistent, particularly among the less exploratory strategies. Our results suggest new options for implementing long-term T. dimidiate control.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131234400&origin=inward; http://dx.doi.org/10.1371/journal.pntd.0010436; http://www.ncbi.nlm.nih.gov/pubmed/35653307; https://dx.plos.org/10.1371/journal.pntd.0010436; https://dx.doi.org/10.1371/journal.pntd.0010436; https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0010436
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know