PlumX Metrics
Embed PlumX Metrics

Accelerating the gillespie τ-leaping method using graphics processing units

PLoS ONE, ISSN: 1932-6203, Vol: 7, Issue: 6, Page: e37370
2012
  • 13
    Citations
  • 0
    Usage
  • 38
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The Gillespie τ-Leaping Method is an approximate algorithm that is faster than the exact Direct Method (DM) due to the progression of the simulation with larger time steps. However, the procedure to compute the time leap τ is quite expensive. In this paper, we explore the acceleration of the τ-Leaping Method using Graphics Processing Unit (GPUs) for ultra-large networks (>0.5e reaction channels). We have developed data structures and algorithms that take advantage of the unique hardware architecture and available libraries. Our results show that we obtain a performance gain of over 60x when compared with the best conventional implementations. © 2012 Komarov et al.

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84862023659&origin=inward; http://dx.doi.org/10.1371/journal.pone.0037370; http://www.ncbi.nlm.nih.gov/pubmed/22715366; https://dx.plos.org/10.1371/journal.pone.0037370.g002; http://dx.doi.org/10.1371/journal.pone.0037370.g002; https://dx.plos.org/10.1371/journal.pone.0037370.g001; http://dx.doi.org/10.1371/journal.pone.0037370.g001; https://dx.plos.org/10.1371/journal.pone.0037370.g004; http://dx.doi.org/10.1371/journal.pone.0037370.g004; https://dx.plos.org/10.1371/journal.pone.0037370.g006; http://dx.doi.org/10.1371/journal.pone.0037370.g006; https://dx.plos.org/10.1371/journal.pone.0037370.g005; http://dx.doi.org/10.1371/journal.pone.0037370.g005; https://dx.plos.org/10.1371/journal.pone.0037370; https://dx.plos.org/10.1371/journal.pone.0037370.g003; http://dx.doi.org/10.1371/journal.pone.0037370.g003; https://dx.doi.org/10.1371/journal.pone.0037370.g002; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0037370.g002; https://dx.doi.org/10.1371/journal.pone.0037370.g003; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0037370.g003; https://dx.doi.org/10.1371/journal.pone.0037370.g005; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0037370.g005; https://dx.doi.org/10.1371/journal.pone.0037370.g006; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0037370.g006; https://dx.doi.org/10.1371/journal.pone.0037370.g001; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0037370.g001; https://dx.doi.org/10.1371/journal.pone.0037370.g004; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0037370.g004; https://dx.doi.org/10.1371/journal.pone.0037370; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037370; http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0037370; https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0037370&type=printable; http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0037370; http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0037370&type=printable; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037370; http://dx.plos.org/10.1371/journal.pone.0037370.g005; http://dx.plos.org/10.1371/journal.pone.0037370; http://dx.plos.org/10.1371/journal.pone.0037370.g006; http://dx.plos.org/10.1371/journal.pone.0037370.g002; http://alm.plos.org/articles/info:doi/10.1371/journal.pone.0037370; http://dx.plos.org/10.1371/journal.pone.0037370.g001; http://dx.plos.org/10.1371/journal.pone.0037370.g004; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pone.0037370; http://dx.plos.org/10.1371/journal.pone.0037370.g003

Ivan Komarov; Roshan M. D’Souza; Jose-Juan Tapia; Jörg Langowski

Public Library of Science (PLoS)

Multidisciplinary

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know