PlumX Metrics
Embed PlumX Metrics

The identification of loci for immune traits in chickens using a genome-wide association study

PLoS ONE, ISSN: 1932-6203, Vol: 10, Issue: 3, Page: e0117269
2015
  • 31
    Citations
  • 0
    Usage
  • 46
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The genetic improvement of disease resistance in poultry continues to be a challenge. To identify candidate genes and loci responsible for these traits, genome-wide association studies using the chicken 60k high density single nucleotide polymorphism (SNP) array for six immune traits, total serumimmunoglobulin Y (IgY) level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against Avian Influenza Virus (AIV) and Sheep Red Blood Cell (SRBC), were performed. RT-qPCR was used to quantify the relative expression of the identified candidate genes. Nine significantly associated SNPs (P < 2.81E-06) and 30 SNPs reaching the suggestively significant level (P < 5.62E-05) were identified. Five of the 10 SNPs that were suggestively associated with the antibody response to SRBC were located within or close to previously reported QTL regions. Fifteen SNPs reached a suggestive significance level for AIV antibody titer and seven were found on the sex chromosome Z. Seven suggestive markers involving five different SNPs were identified for the numbers of heterophils and lymphocytes, and the heterophil/lymphocyte ratio. Nine significant SNPs, all on chromosome 16, were significantly associated with serum total IgY concentration, and the five most significant were located within a narrow region spanning 6.4kb to 253.4kb (P = 1.20E-14 to 5.33E-08). After testing expression of five candidate genes (IL4I1, CD1b, GNB2L1, TRIM27 and ZNF692) located in this region, changes in IL4I1, CD1b transcripts were consistent with the concentrations of IgY, while abundances of TRIM27 and ZNF692 showed reciprocal changes to those of IgY concentrations. This study has revealed 39 SNPs associated with six immune traits (total serumIgY level, numbers of, and the ratio of heterophils and lymphocytes, and antibody responses against AIV and SRBC) in Beijing-You chickens. The narrow region spanning 247kb on chromosome 16 is an important QTL for serum total IgY concentration. Five candidate genes related to IgY level validated here are novel andmay play critical roles in themodulation of immune responses. Potentially useful candidate SNPs for markerassisted selection for disease resistance are identified. It is highly likely that these candidate genes play roles in various aspects of the immune response in chickens.

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84926347320&origin=inward; http://dx.doi.org/10.1371/journal.pone.0117269; http://www.ncbi.nlm.nih.gov/pubmed/25822738; https://dx.plos.org/10.1371/journal.pone.0117269.t005; http://dx.doi.org/10.1371/journal.pone.0117269.t005; https://dx.plos.org/10.1371/journal.pone.0117269.t002; http://dx.doi.org/10.1371/journal.pone.0117269.t002; https://dx.plos.org/10.1371/journal.pone.0117269.t004; http://dx.doi.org/10.1371/journal.pone.0117269.t004; https://dx.plos.org/10.1371/journal.pone.0117269.g003; http://dx.doi.org/10.1371/journal.pone.0117269.g003; https://dx.plos.org/10.1371/journal.pone.0117269.t003; http://dx.doi.org/10.1371/journal.pone.0117269.t003; https://dx.plos.org/10.1371/journal.pone.0117269; https://dx.plos.org/10.1371/journal.pone.0117269.g001; http://dx.doi.org/10.1371/journal.pone.0117269.g001; https://dx.plos.org/10.1371/journal.pone.0117269.g002; http://dx.doi.org/10.1371/journal.pone.0117269.g002; https://dx.plos.org/10.1371/journal.pone.0117269.t001; http://dx.doi.org/10.1371/journal.pone.0117269.t001; https://dx.doi.org/10.1371/journal.pone.0117269.t005; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0117269.t005; https://dx.doi.org/10.1371/journal.pone.0117269.g002; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0117269.g002; https://dx.doi.org/10.1371/journal.pone.0117269; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117269; https://dx.doi.org/10.1371/journal.pone.0117269.t003; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0117269.t003; https://dx.doi.org/10.1371/journal.pone.0117269.g003; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0117269.g003; https://dx.doi.org/10.1371/journal.pone.0117269.t004; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0117269.t004; https://dx.doi.org/10.1371/journal.pone.0117269.t002; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0117269.t002; https://dx.doi.org/10.1371/journal.pone.0117269.t001; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0117269.t001; https://dx.doi.org/10.1371/journal.pone.0117269.g001; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0117269.g001; http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0117269; https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0117269&type=printable; http://dx.plos.org/10.1371/journal.pone.0117269.t001; http://dx.plos.org/10.1371/journal.pone.0117269.t004; http://dx.plos.org/10.1371/journal.pone.0117269.t003; http://dx.plos.org/10.1371/journal.pone.0117269; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pone.0117269; http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0117269&type=printable; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117269; http://dx.plos.org/10.1371/journal.pone.0117269.t005; http://dx.plos.org/10.1371/journal.pone.0117269.g002; http://journals.plos.org/plosone/article/metrics?id=10.1371/journal.pone.0117269; http://dx.plos.org/10.1371/journal.pone.0117269.g003; http://dx.plos.org/10.1371/journal.pone.0117269.g001; http://dx.plos.org/10.1371/journal.pone.0117269.t002

Lei Zhang; Peng Li; Ranran Liu; Maiqing Zheng; Yan Sun; Dan Wu; Yaodong Hu; Jie Wen; Guiping Zhao; Roberta Davoli

Public Library of Science (PLoS)

Multidisciplinary

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know