Rechecking the centrality-lethality rule in the scope of protein subcellular localization interaction networks
PLoS ONE, ISSN: 1932-6203, Vol: 10, Issue: 6, Page: e0130743
2015
- 51Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations51
- Citation Indexes51
- 51
- CrossRef47
- Captures35
- Readers35
- 35
Article Description
Essential proteins are indispensable for living organisms to maintain life activities and play important roles in the studies of pathology, synthetic biology, and drug design. Therefore, besides experiment methods, many computational methods are proposed to identify essential proteins. Based on the centrality-lethality rule, various centrality methods are employed to predict essential proteins in a Protein-protein Interaction Network (PIN). However, neglecting the temporal and spatial features of protein-protein interactions, the centrality scores calculated by centrality methods are not effective enough for measuring the essentiality of proteins in a PIN. Moreover, many methods, which overfit with the features of essential proteins for one species, may perform poor for other species. In this paper, we demonstrate that the centrality-lethality rule also exists in Protein Subcellular Localization Interaction Networks (PSLINs). To do this, a method based on Localization Specificity for Essential protein Detection (LSED), was proposed, which can be combined with any centrality method for calculating the improved centrality scores by taking into consideration PSLINs in which proteins play their roles. In this study, LSED was combined with eight centrality methods separately to calculate Localization-specific Centrality Scores (LCSs) for proteins based on the PSLINs of four species (Saccharomyces cerevisiae, Homo sapiens, Mus musculus and Drosophila melanogaster). Compared to the proteins with high centrality scores measured from the global PINs, more proteins with high LCSs measured from PSLINs are essential. It indicates that proteins with high LCSs measured from PSLINs are more likely to be essential and the performance of centrality methods can be improved by LSED. Furthermore, LSED provides a wide applicable prediction model to identify essential proteins for different species.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84938493723&origin=inward; http://dx.doi.org/10.1371/journal.pone.0130743; http://www.ncbi.nlm.nih.gov/pubmed/26115027; https://dx.plos.org/10.1371/journal.pone.0130743; https://dx.doi.org/10.1371/journal.pone.0130743; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130743
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know