PlumX Metrics
Embed PlumX Metrics

Identification of multi-functional Enzyme with multi-label classifier

PLoS ONE, ISSN: 1932-6203, Vol: 11, Issue: 4, Page: e0153503
2016
  • 23
    Citations
  • 0
    Usage
  • 36
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Enzymes are important and effective biological catalyst proteins participating in almost all active cell processes. Identification of multi-functional enzymes is essential in understanding the function of enzymes. Machine learning methods perform better in protein structure and function prediction than traditional biological wet experiments. Thus, in this study, we explore an efficient and effective machine learning method to categorize enzymes according to their function. Multi-functional enzymes are predicted with a special machine learning strategy, namely, multi-label classifier. Sequence features are extracted from a positionspecific scoring matrix with autocross-covariance transformation. Experiment results show that the proposed method obtains an accuracy rate of 94.1% in classifying six main functional classes through five cross-validation tests and outperforms state-of-the-art methods. In addition, 91.25% accuracy is achieved in multi-functional enzyme prediction, which is often ignored in other enzyme function prediction studies. The online prediction server and datasets can be accessed from the link http://server.malab.cn/MEC/. Copyright:

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84964378060&origin=inward; http://dx.doi.org/10.1371/journal.pone.0153503; http://www.ncbi.nlm.nih.gov/pubmed/27078147; https://dx.plos.org/10.1371/journal.pone.0153503.g003; http://dx.doi.org/10.1371/journal.pone.0153503.g003; https://dx.plos.org/10.1371/journal.pone.0153503; https://dx.plos.org/10.1371/journal.pone.0153503.t003; http://dx.doi.org/10.1371/journal.pone.0153503.t003; https://dx.plos.org/10.1371/journal.pone.0153503.g001; http://dx.doi.org/10.1371/journal.pone.0153503.g001; https://dx.plos.org/10.1371/journal.pone.0153503.t002; http://dx.doi.org/10.1371/journal.pone.0153503.t002; https://dx.plos.org/10.1371/journal.pone.0153503.g002; http://dx.doi.org/10.1371/journal.pone.0153503.g002; https://dx.plos.org/10.1371/journal.pone.0153503.t001; http://dx.doi.org/10.1371/journal.pone.0153503.t001; https://dx.plos.org/10.1371/journal.pone.0153503.t005; http://dx.doi.org/10.1371/journal.pone.0153503.t005; https://dx.plos.org/10.1371/journal.pone.0153503.t004; http://dx.doi.org/10.1371/journal.pone.0153503.t004; https://dx.doi.org/10.1371/journal.pone.0153503; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153503; https://dx.doi.org/10.1371/journal.pone.0153503.g003; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0153503.g003; https://dx.doi.org/10.1371/journal.pone.0153503.t005; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0153503.t005; https://dx.doi.org/10.1371/journal.pone.0153503.t003; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0153503.t003; https://dx.doi.org/10.1371/journal.pone.0153503.t004; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0153503.t004; https://dx.doi.org/10.1371/journal.pone.0153503.g002; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0153503.g002; https://dx.doi.org/10.1371/journal.pone.0153503.t001; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0153503.t001; https://dx.doi.org/10.1371/journal.pone.0153503.g001; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0153503.g001; https://dx.doi.org/10.1371/journal.pone.0153503.t002; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0153503.t002; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153503; https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153503&type=printable; http://dx.plos.org/10.1371/journal.pone.0153503.t001; http://dx.plos.org/10.1371/journal.pone.0153503.g002; http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0153503; http://dx.plos.org/10.1371/journal.pone.0153503.g003; http://dx.plos.org/10.1371/journal.pone.0153503.t005; http://dx.plos.org/10.1371/journal.pone.0153503.t004; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pone.0153503; http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0153503&type=printable; http://dx.plos.org/10.1371/journal.pone.0153503.t002; http://dx.plos.org/10.1371/journal.pone.0153503; http://dx.plos.org/10.1371/journal.pone.0153503.g001; http://dx.plos.org/10.1371/journal.pone.0153503.t003

Yuxin Che; Ying Ju; Ping Xuan; Ren Long; Fei Xing; Bin Liu

Public Library of Science (PLoS)

Biochemistry, Genetics and Molecular Biology; Agricultural and Biological Sciences; Multidisciplinary

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know