The emergence of selective attention through probabilistic associations between stimuli and actions
PLoS ONE, ISSN: 1932-6203, Vol: 11, Issue: 11, Page: e0166174
2016
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures23
- Readers23
- 23
Article Description
In this paper we show how a multilayer neural network trained to master a context-dependent task in which the action co-varies with a certain stimulus in a first context and with a second stimulus in an alternative context exhibits selective attention, i.e. filtering out of irrelevant information. This effect is rather robust and it is observed in several variations of the experiment in which the characteristics of the network as well as of the training procedure have been varied. Our result demonstrates how the filtering out of irrelevant information can originate spontaneously as a consequence of the regularities present in context-dependent training set and therefore does not necessarily depend on specific architectural constraints. The post-evaluation of the network in an instructed-delay experimental scenario shows how the behaviour of the network is consistent with the data collected in neuropsychological studies. The analysis of the network at the end of the training process indicates how selective attention originates as a result of the effects caused by relevant and irrelevant stimuli mediated by context-dependent and context-independent bidirectional associations between stimuli and actions that are extracted by the network during the learning.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84995477391&origin=inward; http://dx.doi.org/10.1371/journal.pone.0166174; http://www.ncbi.nlm.nih.gov/pubmed/27846301; https://dx.plos.org/10.1371/journal.pone.0166174; https://dx.doi.org/10.1371/journal.pone.0166174; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0166174
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know