Functional role of intracellular calcium receptor inositol 1,4,5-trisphosphate type 1 in rat hippocampus after neonatal anoxia
PLoS ONE, ISSN: 1932-6203, Vol: 12, Issue: 1, Page: e0169861
2017
- 10Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- CrossRef9
- Captures22
- Readers22
- 22
Article Description
Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of neurodegenerative mechanisms triggered by oxygen deprivation.
Bibliographic Details
10.1371/journal.pone.0169861; 10.1371/journal.pone.0169861.g004; 10.1371/journal.pone.0169861.g008; 10.1371/journal.pone.0169861.g002; 10.1371/journal.pone.0169861.g005; 10.1371/journal.pone.0169861.g006; 10.1371/journal.pone.0169861.g007; 10.1371/journal.pone.0169861.g003; 10.1371/journal.pone.0169861.g001
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85009069215&origin=inward; http://dx.doi.org/10.1371/journal.pone.0169861; http://www.ncbi.nlm.nih.gov/pubmed/28072885; https://dx.plos.org/10.1371/journal.pone.0169861.g004; http://dx.doi.org/10.1371/journal.pone.0169861.g004; https://dx.plos.org/10.1371/journal.pone.0169861; https://dx.plos.org/10.1371/journal.pone.0169861.g008; http://dx.doi.org/10.1371/journal.pone.0169861.g008; https://dx.plos.org/10.1371/journal.pone.0169861.g002; http://dx.doi.org/10.1371/journal.pone.0169861.g002; https://dx.plos.org/10.1371/journal.pone.0169861.g005; http://dx.doi.org/10.1371/journal.pone.0169861.g005; https://dx.plos.org/10.1371/journal.pone.0169861.g006; http://dx.doi.org/10.1371/journal.pone.0169861.g006; https://dx.plos.org/10.1371/journal.pone.0169861.g007; http://dx.doi.org/10.1371/journal.pone.0169861.g007; https://dx.plos.org/10.1371/journal.pone.0169861.g003; http://dx.doi.org/10.1371/journal.pone.0169861.g003; https://dx.plos.org/10.1371/journal.pone.0169861.g001; http://dx.doi.org/10.1371/journal.pone.0169861.g001; https://dx.doi.org/10.1371/journal.pone.0169861.g003; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0169861.g003; https://dx.doi.org/10.1371/journal.pone.0169861.g001; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0169861.g001; https://dx.doi.org/10.1371/journal.pone.0169861.g002; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0169861.g002; https://dx.doi.org/10.1371/journal.pone.0169861; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169861; https://dx.doi.org/10.1371/journal.pone.0169861.g006; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0169861.g006; https://dx.doi.org/10.1371/journal.pone.0169861.g004; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0169861.g004; https://dx.doi.org/10.1371/journal.pone.0169861.g007; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0169861.g007; https://dx.doi.org/10.1371/journal.pone.0169861.g005; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0169861.g005; https://dx.doi.org/10.1371/journal.pone.0169861.g008; https://journals.plos.org/plosone/article/figure?id=10.1371/journal.pone.0169861.g008; http://dx.plos.org/10.1371/journal.pone.0169861.g002; http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169861; https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169861&type=printable; http://dx.plos.org/10.1371/journal.pone.0169861.g001; http://dx.plos.org/10.1371/journal.pone.0169861.g008; http://dx.plos.org/10.1371/journal.pone.0169861.g003; http://dx.plos.org/10.1371/journal.pone.0169861.g005; http://dx.plos.org/10.1371/journal.pone.0169861.g006; http://dx.plos.org/10.1371/journal.pone.0169861.g007; http://www.plosone.org/article/metrics/info:doi/10.1371/journal.pone.0169861; http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0169861&type=printable; http://dx.plos.org/10.1371/journal.pone.0169861.g004; http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0169861; http://dx.plos.org/10.1371/journal.pone.0169861
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know